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We present a comprehensive account of the special ‘Rayleigh piston’ model for the
spatial and velocity relaxation of an ensemble of labelled test-particles in a one-
dimensional heat-bath of particles with identical mass. This model, originally formu-
lated by Rayleigh in 1891 but since largely neglected, is in effect a prototype for all later
models in singular particle transport theory and serves to illustrate the mathematical
problems associated with the occurrence of singular eigenfunctions and continuous
spectra of a scattering operator. Although other idealized scattering models are known,
the Rayleigh model remains a unique example of an exactly soluble singular system
which, inincluding conservation laws and time-reversal symmetry in scattering, retains

a degree of mechanical realism.
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In the study of model relaxation equations that approximate the behaviour of real gas-kinetic
systems two major sources of difficulty attend even the most elementary treatments. On the
one hand we have the essential nonlinearity of the collision terms governing the evolution of
the closed system through the Boltzmann equation, on the other there is the singular nature of
the corresponding operators which enters unavoidably even in linearized treatments of relax-
ation and particle transport. Both these aspécts have received considerable attention in recent
years, the former largely in the context of rare gas dynamics, the latter primarily in relation
to the equations of neutron transport. In both linear and nonlinear treatments the discovery
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THE RAYLEIGH MODEL 385

of soluble models has played an important part; while these are undoubtedly hard to find,
those that have emerged are of all the more value and in some cases have revealed unsuspected
generalizations. The Bobylev—Krook—~Wu model Boltzmann equation is a notable example in
this respect (Bobylev 1976, Krook & Wu 1977).

Like Boltzmann models, linear transport models are most tractable when reduced either to
scalar form in three dimensions or to ‘vector’ (i.e. full-range) form in one. While the latter is
in an obvious sense unrealistic, there are grounds for the belief that at least some of the mathe-
matical essence of the real system remains in one dimension, whatever geometrical features may
be falsified. This is certainly true of the singular nature of the eigenvalue problems arising which
lead, by one route or another, to the problematics of distribution theory and continuous spectra.
Itis with this aspect that we shall be mainly concerned in this paper; a parallel treatment of model
nonlinear equations will be found elsewhere (Futcher & Hoare 1982).

There are two quite distinct models for the statistical dynamics of the one-dimensional gas.
The first, studied extensively by Jepsen (1965), Lebovitz e al. (1968) and Levitt (1973) is con-
cerned with the motion of a string of non-penetrating particles constrained on a line in the
manner of an abacus. When the particles have equal mass, the property that neighbouring
elements simply exchange velocities on collision leads to an exact solution for the position—
velocity correlation function for a single particle, but by the same token cannot lead to any net
velocity relaxation overall. This and the somewhat unnatural ‘rattling’ correlations which are
found limit the value of the Jepsen model as a prototype for three-dimensional behaviour.

An alternative is to consider a notional heat-bath with which an ensemble of labelled test-
particles interact, the heat-bath particles always presenting an aspect of ‘molecular chaos’ and
being ‘spirited away”’ after each collision. This is, in effect, the Rayleigh model, first formulated
in 1891 and investigated more recently by a number of authors (Rayleigh 1891, Green 1951,
Van Kampen 1955, 1961, Akama & Siegel 1965, Hoare & Rahman 1973, 1974, 1976, Barker et al.
1977 and Résibois 1978). Though it lacks the element of true N-body mechanics present in the
Jepsen model, it does exhibit velocity relaxation and equilibrium fluctuations and a well defined
approach to Brownian motion in the limit of very heavy test-particles. Moreover it is the correct
one-dimensional analogue of the equation of particle transport in a moderator, for which a large,
independent literature exists (see for example Williams 1966, 1971, Hoare 1971).

Although both models lead to subtle solutions, those of the Rayleigh model might be said to
be the more interesting inasmuch as they can be expressed through the eigenfunctions of a
singular integral operator and may in turn act as a set of ‘ basis-distributions’ for the expansion
of other one-dimensional initial-value problems with ‘non-L,’ character. We have already shown
how the Rayleigh scattering operator for equal system and heat-bath masses, and Maxwellian
bath-distribution, leads to eigenfunctions of Hadamard-pseudofunction type with quadratic
singularity and an infinite continuous spectrum above a threshold (Hoare & Rahman 1974); here
we shall complete the analysis of the ‘special Rayleigh problem’ in these terms, extending our
results to non-Maxwellian heat-baths and to the spatially inhomogeneous case.

As we earlier indicated, our interest in the Rayleigh problem is in large part methodological.
Nowhere, so far as we know, has an exact solution been given for a singular master equation that,
however simplified, remains ‘dynamically realistic’. By this we mean that the simplification is
only geometrical, conservation laws and time-reversal symmetry being correctly reproduced.
Of the very few singular models available so far (e.g. the‘ one-velocity’ model of Case (1959, 1960)
(see especially Case & Zweifel 1967)) noneseems to preserve this minimum of physical consistency.
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It is widely acknowledged that a certain paradoxical character attaches to singular transport
theory. While, formally at least, solutions may be given in terms of the eigenfunctions of the
appropriate integral operators, the derivations involved are problematic, particularly in dimen-
sions higher than one, and the completeness of the solution set is not as a rule easy to establish.
Notwithstanding this, it is somewhat unreadily admitted that, even in otherwise intractable
cases, a naive application of a Laplace or Mellin transform can sometimes lead to straight-
forwardly computable solutions that require only ‘elementary’ methods. While distribution
theory and transform methods are well known to be closely interconnected, the lack of soluble
models has so far prevented a detailed comparison of the two for any physically realistic singular
operator.

In the present work, which we hope to make a definitive account of the ‘special Rayleigh
problem’, we shall show that it is possible to compare singular eigenfunction and transform
solutions in such a way that each illuminates the other, while at the same time leading to com-
putationally useful algorithms. Indeed we shall be able to show that a proper formulation of the
model practically forces us to adopt the Bremmerman-Durand approach to distribution theory
(Bremmerman & Durand 1961, Bremmerman 1965) according to which distributions are repre-
sented by the discontinuities of certain analytic functions across the real axis. In these terms the
representation of singular eigendistributions has not only the virtues of simplicity but also
circumvents technical problems, particularly in the demonstration of completeness.

This paper falls into four parts. After an initial analysis of the spatially homogeneous model
(§2) we describe the singular eigenfunctions for the same in some detail, establishing the ortho-
gonality and completeness of the two parity types by ‘distributional’ methods and giving a
proper account of the Fourier expansion of the initial-value solution for the particle velocity
distribution in the singular basis (§3). This extends and completes the previous account of
Hoare & Rahman (1974) while correcting certain misconceptions in it. We then consider the
Laplace transform solution to the same problem and arrive at the time-dependent velocity
distribution for the ensemble by this route (§4). By reduction of the inverse transformation to
real integrals we then obtain the Bremmerman formulation of the original singular eigen-
functions. From this unified standpoint other properties of the system, in particular the velocity
autocorrelation function and the linear-response approximation to the complex admittance for
charged test-particles, are derived (§5). In § 6 we go on to consider the passage-time statistics
for transport to either an upper or a lower absorbing barrier. The former would appear to be a,
so far, unique example of an exactly soluble barrier problem with singular transition operator.
Finally we turn to the spatially inhomogeneous problem (§ 7). Here it is also possible to find an
exact solution to the position—velocity distribution function, at least to within a Fourier-Laplace
transform. Taking appropriate initial conditions we are then able to derive corresponding
expressions for the Van Hove space—time correlation function and its transforms, which may be
used to test certain statistical approximations, such as the ‘ Gaussian’ approximation of Vineyard.

2. THE GENERAL RELAXATION PROBLEM
2.1. The transport equation

Our primary concern in this paper will be with solutions to the integro-differential equation

(2 +ogs) o) = [~ dulk(o,w plor ) = kw0) pls )], (2.1
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THE RAYLEIGH MODEL 387

and its simplifications. In this p represents the time-dependent spatial and velocity distribution
function for an ensemble of test-particles interacting with a heat bath of particles within general
ve(—o0, +0), x€(—00, +0). The transition kernel k(u,v) is the rate constant for transitions
u — dv about v in velocity state-space per unit time. We take the independent variables x, v, T
to be dimensionless reductions of the true variables X, V, ¢, obtained by a procedure to be given,
and the dependent ones p and £ to conform to these under the normalizations

jiowffwdxdvp(x,v,f) =1, (2.2)

and fio duk(v,u) = z(v), (2.3)

where z(v) is the collision number per unit time for a particle of reduced velocity v. An alter-
native to equation (2.1) is thus

[a%”ﬁ“(v)]!’(xw) ~ 7 auko,0) (5,7, (2.4)

Here the ‘gain’ and ‘loss’ terms due to collisions and free streaming are easily identifiable. For
a spatially homogeneous test-particle ensemble the above simplifies to

|5 +20) | s, = [~ dukto pia), (2.5)
which may be written symbolically as
/o) p = — P, (2.6)
with &7 an integral operator with kernel 4:
A(u,v) = —k(u,v) +z(v) 8(u—v). (2.7)

The occurrence of the multiplicative operator z(v) here indicates the singular nature of the problem.
Equations (2.1) and (2.5) represent simple relaxation behaviour without sources or sinks and
we shall thus be considering solutions to the initial-value problems in which p(x, v, 0) or p(v, 0)
are specified at zero time together with the kernel £(«, v).

2.2. The special Rayleigh model

The general Rayleigh model, in which a test-particle of mass M responds to a one-dimensional
heat-bath of particles of mass m leads to a somewhat complicated form for £(u, v) which, though
now qualitatively well understood (Hoare & Rahman 1973, Barker et al. 1981) has so far resisted
all attempts at an analytic solution. In the special Rayleigh model, to which we confine our
attention here, labelled test-particles are dilutely dispersed in a heat-bath of atoms of identical
mass (M = m), the latter having a given distribution H (V) in the (true) velocity variable
(figure 1). Since under these conditions the colliding particles merely exchange velocities, the
corresponding transition kernel takes on the particularly simple form

K(U,V) = ClU~V|Hy(V), (2.8)

with C a constant including the number density and cross section of the particles concerned. Still
in unscaled variables we can write the collision number function

Z(V) = cff dU|V - U|H,(U). (2.9)

25 Vol. 305. A
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Ficure 1. A collision sequence of the special Rayleigh model. The test-particle (black) undergoes random
collisions with heat-bath particles (white) of equal mass, such that velocities are exchanged on impact. The
heat-bath particles ‘materialize’ at random and ‘vanish’ after each impact. Two successive collisions are
illustrated, the first of ‘knocking-on’ type the second of ‘head-on’ type. In the sequence shown the time-
intervals implied are approximately equal.

We shall assume, without serious loss of generality, that the velocity distribution of the heat-
bath is isotropic, namely that Hy(—V) = Hy(V), such that Z(—V) = Z(V) = 2Z(|V]) (half-
range normalization being assumed for Z(|V])). As Rayleigh himself pointed out, it is not
necessary for further progress to assume that Hy(V) is in fact a Maxwellian.

The value of Z(0), the collision number for stationary test-particles is of particular importance
since evidently

Z(0) = 2Cf°°dUUH0(U) - CV, = &%, (2.10)
0

with I}, the appropriate mean speed. The characteristic time 4, and velocity ¥, can now be used
to scale time and velocity as well as the distance variable (X). In this way we are led to the
reductions

u=UVy, hv) =V, Hy(vhp),
v="V/[V, plx,v,7)=VZZ(0)1P(xV,/Z(0),vV,,7/Z(0)),
= Z(0)t, K(uv) = Z(0)7 K(u¥y,oFy),
5= (ZOT) X, =) = Z(W).

For the Rayleigh model, the spatially homogeneous transport equation thus reads

_Op_g%z_) = ho(v)f~wdu|v—u[[)(u,r)—~z(v)p(v,1). (2.11)
It is with this equation that we shall be concerned throughout the next sections. We shall begin
by considering the most important properties of the transition kernel k(u,v) = Ay(v)|v—u| and
its collision-number function z(v).
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2.3. Properties of the transition kernel
Most fundamentally the transition kernel £(u, v) shows three symmetry properties:

(a) detailed balance for reversed collisions,

ho(v) k(v,u) = ho(u) k(u,v); (2.12)

(b) inverse collisional symmetry, k(u, —v) = k(—u,v); (2.13)
(¢) parity decomposition, k(u,v) = kev(u,v) +koa(u,v),

where kev(u,v) = hy(u) max (|ul, |v]) (2.14)

and koa(u,v) = — ho(u) sgn (u) sgn (v) min (|u|, |v]). (2.15)

(b)
4}%

FIGURE 2. Graphlcal demonstration of the parity decomposition of the function f (x, y) = |x—y|. Left, the function
|x—y| for given y > 0, (a), and y < 0, (b). Right, the even component max (||, |y|) and odd component
—sgn (x) sgn (y) min (|x, |y|) for the two cases.

- V—%—N\_
4+ - - A

The last two equations arise from the little known and amusing identity
|x—y] = max (|x|, |y|) —sgn (x) sgn (y) min (|, [3]), (2.16)
(even) (odd)

which is illustrated in figure 2. (See also Appendix 1.)
It follows immediately from (2.12) that the function £y(x) satisfies the transport equation with
the left-hand side zero. Thus p(v, 00) ( =#hy(v)) is stationary under the action of k(u,v):

" duk(u, 0) hy(w) = () hy(v). (2.17)

At the same time we note that it is possible to define an operator and symmetric kernel
G = G(u,v) = k(u,v) [he(u) /hy(v)]} = G(v,4), (2.18)

in terms of which the transport equation (2.5) may be reduced to symmetric (self-adjoint) form.
Thus, by defining the new dependent variable p(v,7) = hy(v)~% p(v, 7) we have that

[a_af +z(”)]1’(”’ T) = f: du[ho(v) ho(u)1E [u—v| p(u, 7). (2.19)

The effect of the parity decomposition (¢) above on the physical interpretation of the model is
of considerable importance. On defining the parity components

pev(v,7) = §[p(v,7) +p(—0,7)] (2.20)

and p"d(v> T) = %[p(v, T) "P( =, T)], (2'21)
25-2
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it follows that the equation (0p/07) = —&/p can be decomposed into the separate relations

Opev/0T = — L evpev, (2.22)
Opoa /0T = — AL oapod, (2.23)
with operators corresponding to the kernels
A ov = Aev(u,v) = —2max (|u|, [v]) hy(v) +z() Sev(u,v), (2.24)
A oq = Aoa(u,v) = sgn () sgn (v) min (|ul, |v]) ke(v) + z(x) oa(y, v). (2.25)
Here dev(u, v) and doa(u, v) are parity components of the d-function defined (see Appendix 1) as
dev(%,y) = 3[0(x—y) +8(x+y)], (2.26)
doa(x,y) = $[6(x—y) —8(x +9)). (2.27)
However, on constructing equations (2.22) and (2.23) explicitly, we find further simplifications to
a—‘%‘é(%ﬁ v)f dupev(u, 7) max (Jv|,u) —z(v) pev(v,7), (2.28)
and %96—22’—& —2sgn (v v)f dumin (|v], %) poq(4,7) —2(V) Poa(v, 7). (2.29)

The physical content of these equations is that the first governs the particle speed distribution
p(|v],7), the second the flux of test particles F(v,7) = || poa(v, 7). Making the natural association
pev(v,7) = $p(|v],7), the latter now being half-range normalized, we obtain

f”quwnu=1, (2.30)
and noting similarly that z(|v|) = 2z(v), &y(|v|) = 2ke(v), v € (0, c0), wefind for the speed transport
equation %Mwm=—%wwx (2.31)
with 4 the half-range operator

B = Blu,0) = hy(Jol) max (Jul, |o]) = 20) 8(Ju] — [o])- (2.32)

As here, we shall keep modulus signs whenever ambiguity is possible, but omit them otherwise.

Itis the flux F (v, 7) rather than p(v, 7) thatis the usual quantity of interest in neutron transport
calculations. In one dimension the positive and negative signs for F indicate motion to the right
and left respectively, while the total flux,

Fioy(7) f dwp(o,7) = (7)), (2.33)

is clearly identical with the mean particle velocity at time 7. Thus as pev(v, 7) and p(|x|,7) tend
to the equilibrium values 44(v) and £y(|v|), the flux F(v,7) tends to zero everywhere. A separate
transport equation for F(x,7) can be derived from (2.32), but gives no useful simplifications.
We now turn to those properties of the transition kernel that emerge through the collision-
number function z(v). Since /y(v) is of even parity, it is clear from the relation (2.16) that

z(v) = 2[: dumax (|v], u) hy(u) = z(—v). (2.34)
Hence immediately Z'(v) = 2[: duhy(u), (2.35)
and z"(v) = 2hy(v). (2.36)
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Alternatively, the last two properties follow by symbolic differentiation under the integral sign
i.e., d(|v|)/dv = sgn (v) and d*(|v|) /dv® = 28(v). Given the (full-range) normalization of /,(v) it
is further evident that

z(v) ~ ‘1)‘ - (2.37)
P>t 0
and, since z'( £ 00) = 1, z(v) —vz'(v) > 0; v—>tco. (2.38)

Thus in the scaling chosen z(v) is a monotone increasing function, symmetrical about a minimum
at v = 0 and behaving for small v as

2(v) = 1+ 2hy(0) 22+ O (o). (2.39)
To these we may add the important bounds

1<z(v) < 1+]o]. (2.40)

2.4. The Maxwellian heat-bath

To exemplify the scaling process and link up with our earlier work we shall briefly set out the
above steps for the special case of the Maxwellian heat-bath. Let ¥ be the real velocity of a heat-
bath particle of mass M, Maxwell distributed at temperature 7. The Maxwell distribution for
one dimension is

Hy(V) = (M/2nkg T)Yexp (— MV2/2k5 T), (2.41)

with mean speed Vy = (2kg T/nM)3.
The transition kernel can thus be written

K(U, V) = C(2kg T/nM)} |U~ V] exp (— MV?/2kg T), (2.42)

where C is the time-scaling factor as before. The collision-number function (2.3) can be

evaluated as
Z(V) = C[Verf(V/x?V,) +V,exp — (V2/nV3)]. (2.43)

Following our previous scaling procedure with ¥ as above, we arrive at the dimensionless
quantities

ho(0) = m-exp (= 0%/), (2.44)
k(u,v) = w1 lu—v| exp (—v*/n), (2.45)
z(v) = verf (v/n?) +exp (—v2/n). (2.46)

Noting that z'(v) = erf (v/n}) we see that the Maxwellian heat-bath distribution satisfies the

special relation
z(v) = vz’ (v) + Enz"(v). (2.47)

In general this is true only asymptotically (cf. equation (2.38)). A representation of the sym-
metric kernel (2.18) is drawn in figure 3, and the collision number function z(x) is shown in
figure 4, both for the Maxwellian heat-bath.}

+ In our earlier publications (Hoare & Rahman 1973, 1974, Barker et al. 1977) we used the more convenient
variable x = V/Vynt with evident simplification of the above equations. We adhere to the choice v = V/V, in
the present work rather than carry stray factors of n# through the whole of our general development.
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Frcure 3. The symmetrized Rayleigh transition kernel G(x, v) for a Maxwellian heat-bath (equations (2.18) and
(2.45)). The coordinate origin of the w#,v-plane is at the centre of the figure, the # = v diagonal running
between the peaks. Note the discontinuity in the first derivative along this line.
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z(v)

F1cure 4. The collision-number function z(v) = v erf (v/nt) +exp (—v?/n) for the Rayleigh test-particle
in a Maxwellian heat-bath (equation (2.46)). The asymptote z(v) ~ v is shown as a dashed line.

3. SPECTRAL PROPERTIES AND THE EIGENVALUE SOLUTION

Asisnow well established in particle transport theory (Williams 1966, 1971) the general solution
of equation (2.5) can be formally expressed as

po,7) = ho) [ 1+ Sapgi0) et [ a0, evdn]. (3.1)

. k €
Here {A;} is the discrete spectrum of the operator & of equation (2.7) and C represents the
continuous spectrum with values Ae[1, o] in our present scaling. The eigenfunctions ¢,(v) and

& (v, A) satisfy
A =29, (3.2)

with Ain the discretum and continuum respectively. The equilibrium distribution arises from the
special eigenvalue A, = 0 with eigenfunction ¢,(v) = k,(v) according to (2.17). The quantities
a;, and a(A) are functions of the discrete and continuous variable A to be determined from the
given initial conditions p(v, 0).

The eigenvalue problem may be seen explicitly if we separate the variables as

p(v,7) = ho(v) $(v) O(7) (3.3)

and substitute in (2.5). In this way we arrive at the conditions

1 o]
$(0,2) = s [ [l o) $(0) (34)

O(t1) = e, (3.5)

with A the separation constant.
In equation (3.4) we see how the continuous spectrum is associated with the vanishing of the
denominator, z(v) — A, which, referring back to (2.39), we may confirm occurs when z(0) =
1 < A < 0. That the continuum is real and positive is self-evident; for the discretum we may
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394 M.R.HOARE, S. RAVAL AND M. RAHMAN

prove that & is positive-definite by noting that, for arbitrary g(v) € Ly( — 00, +0), we have, on
using (2.17) and (2.18),

(etit,ofgtd) =5 [ du[” dolu—ol[gw) ho(0)t —g0) b
= 0.

We can now usefully separate the parity components of ¢, obtaining the uncoupled equations
[2(6) = X0 fov(s,2) = 2 [ duma [o], ) o) fev(as 1), (3.6)

[2(6) = 2] foa(0,2) = ~255n (o) [ cumin (0], ) o) Boa(s 2. (37)

From the definition of z(v) and its even parity, it is evident that the eigenvalue A, = 0 and the
equilibrium eigenfunction ¢, (v) = 1 belong to the even parity equation.

It will be clear that there is much more to the implementation of equation (3.1) as a useful
solution than the simple Fourier analysis required for a regular eigenvalue problem. In brief,
we must first establish the correct interpretation of the singular eigenfunctions ¢(v, A), prove
normalization and completeness for an adequate class of initial distributions (v, 0), and then
give a clear prescription for the determination of the expansion coefficients 2(A). The general
background to this problem has been discussed by Case (1959, 1960) and evaluated critically by
Hangelbroek (1973); here we shall illustrate in technical detail the implementation of the
‘singular eigenfunction method’ by reference to the Rayleigh model. It will be convenient to
consider in turn the discrete spectrum, then the even and odd singular eigenfunctions, and then
finally to derive expressions for the expansion coefficients after completeness has been proved.

3.1. The discrete spectrum

On differentiating equation (3.4) with respect to v, we obtain first the integro-differential
equation

2(0) B0+, ) [20) =X = [ dusgn (0-u) hoa) $ (1, ), (38)
and then the singular second-order equation
[2() = A1 $"(v,2) + 22" (v) $' (v, A) = 0. (3.9)

Note that the latter is obtained by differentiation of either of the parity components (3.6) or
(3.7), this confirming that the respective parities are accounted for in the boundary conditions
of the problem. Now, so long as A < 1, this is an elementary, regular equation whose general
solution is the linear combination

900.0) = 40) [

Here A and B are as yet arbitrary functions of A. It is convenient now to put» = 0in (3.6) and
(3.7), and we observe that

(=2 $(0,A) = | duu] ho(a) $(u,A), (3.11)

~—~

B(X). (3.10)

(1-0¢'0,2) = = dusgn (u) iu) $ (s, ). (3.12)
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Recognizing that the terms in 4 and B in (3.10) are the even and odd components of the solution
respectively, we may form the conditions

(1-2)B = B, (3.13)
4 4 ©  dy
and _]._:_A = m—Afo [;(y—)-:—A—]—T (3.14)

Here we have used the important relation

°° v dw _(*_dy 1
2fo dy ’W)fo [z(w)—A]z‘fo o) - 1-X (8.15)

this being the first of many occasions where the properties z”(v) = 2k,(v) and z’(c0) = 1 will allow

us to simplify by partial integration (see Appendix 2).

From the above it follows immediately that either A = 0, in which case 4 = 0 and Bis arbitrary,
or A # 0, when necessarily 4 = B = 0. No other possibilities exist. Thus, with the exception of
the single equilibrium eigenvalue A = 0, the discretum is empty. This confirms for the general heat-
bath the result obtained by Hoare & Rahman (1974) for the Maxwellian. A more abstract proof
of the same result has recently been given by Dreissler (1981).

3.2. The singular eigenfunctions

As we have outlined previously (Hoare 1971, Hoare & Rahman 1974) the solutions of
equations (3.6) or (3.7), while radically altered in the continuum range A > 1, may nevertheless
be treated satisfactorily within the realm of generalized functions. Recalling that the generalized

solution to
xF(x) =1

-1
is Flx) = Plxn 4 3 a,00(x), (3.16)
k=0

with 6®(x) the derivatives of the é-function and Pfx—" the inverse-power ‘pseudofunction’
(Zemanian 1965, § 1.4), we may reinterpret the first integral of equation (3.9) in the following
way. Writing it in the more compact form

(d/dv) {[z(v) = A]* $(v, A)} = 0, (3.17)

in which ¢ (v) can stand for either the full eigenfunction or one of its parity components, we appeal
to the result that, if G(x) is a distribution, then the equation G’(x) = 0 has only the solution
G(x) = const., i.e. the classical one (see for example Jones 1966, p. 89). Thus it follows that there
are two first integrals

[2(2) = A1* Bev (v, 4) = 41(A) (3.18)
and [2(2) = A% goa (v, A) = 45(2), (3.19)

with the functions 4,(A), 4,(A) to be determined through the original integral equation. We can
now examine the two parity types separately.

Since undoubtedly ¢¢, (v, A) is an odd function, we recognize that the constant 4, can only be
zero and that the first integral can be written

Pov(v,A) = By[8(v—[03]) = 8(v+ [0a])] + Ci[6" (v — |va]) + 6" (w + [02])]- (3.20)
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Here we use the symbol v, for the root such that z(v,) = A, noting in advance that we shall need

the identity
8lz(0) ~A] = [2/(8)]1 (v —1y). (3.21)

It then follows on integration that

$ev(v,A) = A+ By[H(v—|0,]) + H(—v—[0:])] + C[8(v—|oa]) +0(v + [0a])],  (3.22)
where H(.) represents the Heaviside unit step function and 4, B, and C; are constants of inte-
gration, not of course independent. To obtain these we must substitute back into the original
equation (3.6), its once-differentiated version (3.8) and the pure differential equation (3.9). It
suffices, however, to take the v = 0 case from which we obtain

(1-2)4= 2f0 dy hy(y) Pev(y, A) = A+ By[A =0, 2" (v))] + 20| ho(v2) Cy. (3.23)

Finally, B, z'(|vy]) = 2C, hy(vy).
On solving in terms of the remaining unknown the even eigenfunctions become

Pev(v,A) = A{t —H(v—|o,]) —H(=v—|oa]) + q(0) [0(v = [0a]) +8( + [0a])]},  (3.24)
in which we have written q(vy) = %|2'(0a)|/ho(v)- (3.25)

The remaining constant 4 must be supplied by a normalization.

Turning now to the odd eigenfunctions, we can proceed in a similar manner. Since ¢oq(v, A)
is certainly of even parity, we must retain the pseudofunction term in (3.16) and select the even
components of the é-function and its derivative. Thus

Poa(v; A) = Ay PI[2(0) = A1 72+ By[d(v — [0a]) + 8 (v + |0a])] + Co[&" (v — [0a]) — 8" (v + [0a])]-
On integrating this we obtain
Poa(v,A) = A, R(v; ) + Bo[H(v—|0]) — H(—v—[0)[)] + Co[ (v = [02]) =8 (v + [0a])],  (3.26)

in which we have written R(v, A) for the Hadamard pseudofunction

R(s,A) = Pf f O[Z—@—?———ZW (3.27)

(See Appendix 3. We shall usually drop the prefix Pf when the singularity is clear from the
context.) Two of the constants of integration can be eliminated as for the even eigenfunctions.
If we put v = 0in (3.7) it follows that

4 o ©
£ = =2 [ o) R ) 28, dyhols) ~26um(u), (3.28)
VA

which may be used in combination with equation (3.17). After a similar development to that for

equation (3.23) we find
B,z (|vy]) = 3Cyho(vy). (3.29)

Lastly, using the singular counterpart of (3:15),

2"y ho) Ry, ) = R0, ) 25 (3.30)
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(see Appendix 2), we can reduce equation (3.28) to
— Ay R(00,A) = B,y[1—2'(|v])] +2C, ho(v,).
Thus, on solving in terms of 4,, the odd solution becomes
Poa(v,A) = A4{R(v, A) — R(00, A) [H(v— |1]) — H(=v~|v,])]
— R(o0, X) q(02) [8(v— o]} — 8(v+ [oa]) ). (3.31)

Again the remaining constant is to be determined by a normalization.
It may be as well to recall here that the action of the pseudofunctions Pf[z(x) —A]-2 and
R(x, A) is determined through the functional

PG, 9(x)) = Fp [ dxG(x) pl)

in which G(x) is the given function and ¢(x) is an appropriate testing function. The operation
indicated by Fp on the right means the extraction of the Hadamard finite part of a formally
divergent integral, in effect the expansion of the integrand about the singularity in sufficient
order toisolate regular and singular contributions, followed by subtraction of the latter. Operation
with PfR(v, A) involves double integrals, but this is no essential complication. For further
details of the extraction of finite parts and the properties of the function R(v,A), refer to
Appendix 3.

3.2.1. Orthogonality of the eigenfunctions

The orthogonality of the eigenfunctions of the transition operator for the Rayleigh problem is
in effect guaranteed by the symmetry of the operator ¢ defined in equation (2.18) which derives
in turn from the detailed-balance condition (2.12). Nevertheless it is instructive to confirm the
orthogonality property directly, while at the same time finding the normalization functions that
will be needed for Fourier analysis.

If we define the inner product

(640, 8500 = [ dyloy) 800,20 (0, V), (3.32)

in which 4 and B may stand for any of the designations ‘0’, ‘ev’ or ‘od’ then it is clear on parity
grounds that

(Bo(A); Boa(d)) = 0, (3.33)

and (Pev(A), Poa(A’)) = 0. (3.34)

It remains to prove that (Po(A), ev(A)) = 0, (3.35)
and that (@ev(A), dev(A’)) and (¢oa(A), Poa(A’)) are of the form

(Pev(A), fev()) = 41 (A)2 Ny(A) 8(A - "), (3.36)

and (Poa(A), Poa(A)) = A3(A)% Ny(A) 6(A - A7), (3.37)

respectively, with N;(A), Ny(A) explicit normalization functions.
The first of these combinations is straightforward since, by partial integration, we have

(G0 besl0) = [ dohy(s) Benlss )
=AW 2] " rioty) = (D) | = 0. (3.38)


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

398 M.R.HOARE, S. RAVAL AND M. RAHMAN

Turning next to the even, singular subset we now examine the integral (3.36), assuming with no
loss of generality that A’ < A, i.e. that 0 < v, < v,. The following identities for the step and
d-functions will be needed:

[H(x—|a|) — H(x+|a])][8(x— [b]) +8(x +[b])] = H(|a| — |b]) [8(x—|b]) +8(x+|b])], (3.39)
—[H(x—|a|) — H(x+ |a|)] [H(x— |b]) — H(x + |5])]
= H(x—max (|a|,|b|)) — H(x + max (|a|, |b])). (3.40)

Using these we see that the range of integration can be split into four:

© —v) —vy’ ) ©
[ I I I I
—® —® —v Y U

On careful examination of each resulting group of terms we find that the expected cancellations
occur and, after reverting to the A- rather than the v,-variable, we find the only surviving term to
be a convolution of ds, from which

(Pev(v:2); Bev(: X)) = [2'(|oa])®/2Ro(02)] A1(2)2 (A = X'). (3.41)
We have thus proved the normalization function to be
M(2) = [2/(|oa])3/2he(v2)] 41(A), (3.42)

the constant 4,(A) being still disposable. If we wish for an orthonormal set, we can evidently
create it by setting

4,0 = [22’(’]’15:'3)3]% = 200t [ [ty dy]_g. (3.43)

The proof of orthogonality for the odd eigenfunctions is more problematic. Composing the
integral (3.37) we find that it breaks down into six terms containing the possible combinations of
H(.), 6(.) and R(.) in the products of the expressions (3.26). To simplify these we need the
further identities ‘

[H(x—|a]) —H(—x—|a])][6(x—0]) — 8(x + |]]

= H(|b] —|a]) [8(x— [b]) + 8(x + [b])], (3.44)
[H(x—|a|) — H(—x—|a])] [H(x—|b]) = H(—x—|b])]

— H(x— max |al, o)) + H(—x—max (la], ]B])),  (3.45)

and the easily demonstrated integrals

Qf: dy R(y, A) R(y, ') he(y) = R(0,A) R(c0, A") —[R(00,A) = R(0, A")]/(A=A"), (3.46)

and 2" dyhoy) R, ) = R(o0,2) =2 () Bl[o, X) =527 (3.47)
(Appendix 3). It follows after lengthy manipulations that
(0a(v,2); Poa(v, ")) = [45(A)? R(00, )2 2" ([0a])3/ 20 (v2) ] 6 (A = A'). (3.48)
Thus the required normalization constant is
Ny(A) = R(00, )22’ (|uz])2/2he(v)) = R(c0, )2 Ny(A). (3.49)
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3.3. Completeness

The problem of completeness and the associated Fourier analysis of a probability distribution
P(v,7) is one of some subtlety. Indeed it seems to be characteristic of model transport theory that,
in the rare instances where exact solutions are known, the precise nature of the space spanned by
the singular eigenfunctions remains obscure, the determination of the expansion coefficients
requires careful analysis and each case must be treated very much on its own merits. For further
detail of background and techniques in this controversial area we can only refer again to Case &
Zweifel (1967) and Hangelbroek (1973).

Here we shall evade the more general issues and concentrate on a constructive proof of the
completeness of the even and odd eigenfunction sets for the Rayleigh model with respect to a
function space adequate for the problem in hand. As usual in particle transport theory it will be
sufficient to require that we span a space of ‘reasonable’ initial distributions P (v, 7) for example
those for which p(v, 7) possesses a Laplace transform (cf. Corngold et al. 1963). In oné dimension
a satisfactory characterization might be the space L,(—o0, +00) with p > 1, augmented by
d-functions. Ronen (1973) has usefully discussed this and other aspects of the choice of function
spaces relevant to transport processes.

We shall first give a constructive proof of the completeness of the even eigenfunctions, this being
relatively straightforward. We then outline a non-constructive proof of completeness for the
odd functions similiar to that of Hoare & Rahman (1974) for the Maxwellian case but leave a
fuller exposé of this problem to be treated under the heading of the Laplace transform method
in § 4. Finally the more practical problem of obtaining the expansion coefficients a(A) for use in
equation (3.1) is taken up.

3.3.1. Completeness of the even eigenfunctions

Let 2, be the (as yet uncharacterized) function space spanned by the functions @ev with
weight hy(v). Since in the initial-value problem we expect an evolution p(v,7) — p(v, 00) = hy(v)
to occur, it is reasonable to restrict attention to the even component of p orthogonal to /,(v).

~ Consider a function {(v) €2, with this property. Then we may assert that, for suitable
expansion coeflicients a(A),

£() = hy(0) [1 + f lwd/\a()\) bev(v, A)], (3.50)

where necessarily ‘ f:o do[§(v) — he(v)] = O. ‘ ‘ (3.51)

On changing dependent variables, f(v) = {(v) /hy(v), w(v)) = A(v,) a(v,), and the independent
variable A - v,, and inserting the expression (3.24) for ¢¢v, the integral on the right of (3.50) yields

f) = fl: dv, w(v)) 2’ (v)) _‘ﬂg}%@ +1. (3.52)

From this, on differentiation with respect to v, the following equation emerges:

dw,(v)/dv+ P(v) w4 (v) = Q(v), (3.53)
in which P(v) = (d/dv){In[2'(|v])3/2he(v)]}, (3.54)
and Q(v) = —=2f"(v) hy(v) /2’ (v)2. (3.55)
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The solution follows in the usual way as

o) = 20 [2 [ ") dy -2 007 0) ],

in which £ is a constant of integration. This is in fact zero, as may be shown on substitution back
into equation (3.52). Finally

i) = 7Sk 2 " e au-£0). (3.560)

We have thus found a constructive procedure for determining a(v) under only the mildest
conditions on the function {(v): no more than simple integrability is required.

Now suppose that we seek an alternative derivation by the ‘naive’ method of using ortho-
gonality under the assumption pro fem. that the necessary integrals can be interchanged. With the
use of the normalization (8.95) it then follows immediately that

T A0 l) peu, ) = [ dvgen(s, ) ho() f AN a(X') (v, 1)

— — 00

» -
_ f AN a(X) | dohe(o) fev(s, ) fev(v, X)
— A(N)2N,() a(/\)

If now the left-hand side is evaluated by using the expression (3.24) for gev, the result corre-
sponding to equation (3.56) is recovered. This provides post hoc justification for the interchange
of integrations and the use of the ‘natural’ Fourier coefficient formula

1 0
—_—— v 3.57
4A) = gy AT f __d0G(0) gev(v, ) (3.57)
so far as the even functions are concerned.

3.8.2. Completeness of the odd eigenfunctions

The completeness problem for the odd eigenfunctions is by no means as straightforward as
that for the even and the caution with which we approached the latter will be seen to be fully
justified. Although a much neater approach to completeness will be possible with the aid of the
Laplace transform. method of §4, a direct method is still of interest in exposing some of the
technical problems associated with the Hadamard pseudofunctions R (v, A).

Since the eigenfunction ¢, = h, is purely even, we can assert the existence of a function space
Doa spanned by the @oq and a class of functions {,(v) (not in general probability distributions)
such that, for ;€ @4, there exist expansions of the form

Go(v) = hy(0) f :° AAB(A) doa(v, A). (3.58)

Entering the expression (3.26) for the odd eigenfunctions and rearranging the result slightly
we find that

G(0) = ho(2) f " oy (0)2/(02) R, )

Ld [, ("
)

du, R(o0, 2(1,)) wzw},
0
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in which we have put w,(A) = 4,(A) b(A) and written the pseudofunction R(v, A) as R(v, z(v,))
for the sake of integration over v,. By direct integration it then follows that

" e = [ aumio) [ dnsosto) 200 R 2(00)

+ 1fm dvy wy(v,) R(00, 2(v2)) — 42" (|0]) f " duy 03(0,) 2/ (0) R0, 2(0).  (3.59)
2 0 0

In all these expressions we leave it understood that the quantities R(., .) are pseudofunctions and
that the Hadamard finite parts are taken as appropriate. The double integrals arising will not
in general be interchangable; however, a sufficient condition for them to be so is that &,(v,)
satisfy a Lipschitz condition (see for example Muskhelishvili 1953). With this proviso we can
reverse the integral signs in the first term on the right and simplify it as follows:

[T dnwwize) [*_ayme R 26)

=120 [ a0 2/ (0) RO, 200) 45 [ dos 04(02) 2(0) Rieo, 2(02)

+P ©dv, wy(v,) 2'(v)

V .
o [2(v) —z(v))]
Here the Cauchy principal value, Pv, arises for the first time through the identity

Pv(1/x) = PfH(x) [x=PfH(—x)/x (3.60)
(cf. Zemanian 1965, §1.4).

Putting this result back into equation (3.59) we arrive by further manipulations not at an
explicit expression for w,(v,) comparable with (3.56) but to a singular integral equation to be
solved for the unknown function. This takes the form

]v|)3R oo,v)wzv) Pf doy 0y(v)) 2'(02) _ f dy La(y) — ()()(v)_ (3.61)

T2(0) —z()

This is a standard equation of Carleman type for which a formal solution can be written via a
Hilbert transform. Here we need only the existence of the solution under the stated conditions;
for full details and background refer to Tricomi (1975). With the above, we have demonstrated
the completeness of the set {@oa(v)}, albeit in a non-constructive manner. Further insight into the
behaviour of the singular basis sets will be gained in the next section, in which we study the
Fourier expansion procedure for the same.

3.4. Derivation of the expansion coefficients

If we attempt to find the expansion coefficients 5(A) of (3.58) by evaluation of the integrals

® Q0 &y(0) doa(v, A f dv ho(0) Goa(v, A f AN oa(v, X') (3.62)

— 0

using orthogonality, then there can be no question of interchanging the operations on the right
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in view of the pseudofunctions that appear there. To see what is involved let us abbreviate the
functions ¢oq in a form, the usefulness of which will become clear as we go on. We put

¢°d(v> /1) = AZ(A) [R(v; /\) - a(v> /\)]; (3'63)
“(v> A) = R(OO: A) g(v> A)/g(OO, A); : (3~64)
4(90, A) = 2hy(v)) /2" (J0a])?, (3.65)

(v, A) = g(o0, ) {[H(v—[0a]) —H(—v—[02])] +2"(02) [0 (v~ [0,]) = 6(v + 0 ])]},  (3-66)

noting that the function g(v, A) is an explicit form for the definite integral

g(v,2) = f:dya'[z@) Y (3.67)

Examining now the right-hand side of (3.62) we see that this may be written

0

dv &5(v) doa(v, A) = B1(A) +f2(A),

— 0

where () and B,(A) are the integrals

A = 4,0) [ dobo) R 1) [ a0 4,30 5(0) R, ),

Ba(2) = Ay() f AN b) 45X) [ o) (200, 2) 20, 1) ~ (0, 1) R, 1) ~a(s, 1) R, V)]

Now, while the order of integration in the first integral can undoubtedly be reversed under mild
conditions similar to those governing the ¢@ev-integrals, the presence of the pseudofunctions
locates the difficulty in B,(A). But, although this type of double integral is unfamiliar, we know
that a simple modification suffices to reduce the action of R(v, A) to the taking of Cauchy principal
values (see Appendix 3). By transforming in this way we are then able to apply the Hardy-
Poincaré-Bertrand formula to effect the interchange (Hardy 1908, Tricomi 1957). The theorem
in its more general form states that

d!/F x,% dxF(x;%Z) 2
f Pv f Pvfdva G—7) (x=2) (x—~z)+n F(z,z,z). (3.68)

Thus, as a result of the interchange of integral signs, the additional term n2 F(z, z, z) must be
entered.
In the present case we proceed as follows. The pseudofunction R(v, A) is decomposed by writing

R(v: /\) = Rreg(v, A) +Rsing(v: /\): (3'69)

in which (see Appendix 3, equation (A 3.7))

o 1 1

Bran) = 5000 [ o ) (370
—sgn (v) ol dy

Roins(2:2) = Z'(v2)* Pffo [u—v,]?

_sgn (v) 1 sgn (v)
-For [l 370

' (vy)* Z'(v)*u
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The Poincaré-Bertrand integral is now narrowed down to one involving just the singular part

of R. This is dvho(0) doy Ay(o )
1/1=A/\Pf°° ””, Pf 2 .
W =LNP| TNz ) o (ol ox]) 200)

Appeal to the theorem then allows us to write

®_dv ©  doy dy(X) B(X) hol)
I(A) = Az(/\) Pv . mPVJO (1)—-1))() (v-vA)z (l))() ( )
A) Pvf: do, I:'Vf00 dv v—vAz(A,) b(’\lz ho(v)

v
) (v—vx) 2’ (0x) 2 (02)

+2n2b(/\) Ay(A)2ho(v)

(3.72)
2'(|ua])?

The result is that

dvdy(v) Poa(v, A) = A(A)2b(A) [No(A) + 272 ho(v2) /2 ([0a])°]- (3.78)
Writing in the form of N,(A) from equation (3.49) we see that the expansion coefficients 5(A) can
be given as

bO) = e () Bealos ), (3.74)
with Ny(2) = gloo, )1 [R(00, A)? + w2 (00, A)2]. (3.75)

The normalization constant 4,(A) is of course immaterial in the calculation of the initial-value
solution (3.1), for which we have now given a complete algorithm.

3.5. The ‘symbolic’ eigenfunctions

If we attempt to formalize the above by defining new eigenfunctions
Poqa(v,2) = Ny(A) =2 he(0) [R(v, 2) — (2, A)], (3.76)

then, provided that the integral sign is taken to stand for the whole of the foregoing analysis, we
can consider the set orthonormal and write

b

‘ f dv By (0, A) By (1, V) = S(A=X'). (3.77)

With the same proviso, the function 4(2) can be written as though it were the ‘formal’ Fourier
coefficient:

b(A) = 00dv & (v) Poalv, A). (3.78)
The above is what Case has called the ‘symbolic’ orthogonality property of singular eigen-
functions (Case & Zweifel 1967, p. 69). The use of ‘symbolic’ expressions in equations is fraught
with considerable dangers of misunderstanding, as a number of mistakes in the neutron transport
literature testify (see especially Kuiter & McCormick (1965) for a critical discussion). Hangel-
broek (1973) has also objected to their application on the grounds that such expressions would
seem toimply anindefinable product of distributions. We shall avoid unqualified use of expressions
such as (3.77) and (3.78) so far as possible.

26 Vol. 305. A
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404 M.R.HOARE, S. RAVAL AND M. RAHMAN

4. SOLUTION BY LAPLACE TRANSFORM

In the introduction we promised to work out the connection between the singular eigenfunction
solutions just obtained and the results of applying the Laplace transform to the same transport
equation. If these were simple alternatives, on the level of textbook solutions for non-singular
problems, this would be a superfluous exercise. But in the present model it proves to be of con-
siderable interest both theoretically and practically: it both explains the nature of the singular
eigenfunctions and provides the neatest proof of their completeness; and it leads to what is
probably the simplest computational algorithm for obtaining the initial-value solutions p(v, 7).
Neither of these aspects can be said to be familiar: the pseudofunction PfR(v, 1) seems virtually
new to statistical mechanics, while the computational methods referred to, involving numerical
inversion of the Laplace transform, are still little appreciated among physicists.

4.1. Transformation of the initial-value problem

Although, as in the singular eigenfunction method, the problem may be split into treatments
of odd and even parity components, this proves to be of little advantage and we can defer parity
considerations until a later stage. We shall follow the approach given by Barker ¢t al. (1977) with
minor differences of scaling.

Let us begin by factoring out /%,(v) so as to define

b(v,7) = ho(v) F (0, 7). (4.1)
The transport equation (2.5) thus becomes
-aiga%l—) =f du |v —u| hy(u) F(u,7) — 2(v) F(v,7). (4.2)
On applying the Laplace transform
Sfv,s) = fw e~ F(v,7)dr (4.3)
0
to the above, it follows that
[2(0) 451/ (0,5) = [~ dulo—ul b fa9) + Flv, 0, (44)

in which F(v, 0) = p(v, 0) /hy(v) gives the initial condition. Let it be emphasized once again that
the present procedure makes no demands on the nature of p(v, 0) other than that it should possess
a Laplace transform. The class of acceptable initial conditions will certainly include all ‘reason-
able’ probability distributions including the ‘fundamental’ condition: p(v, 0) = (v —1v,).

Unlike the eigenvalue equation of the previous section, equation (4.4) can be shown to be
exactly soluble by essentially ‘elementary’ means. We first differentiate both sides twice with
respect to v using the symbolic relation (d2/dv?)|u —v| = 28(u —v) and, after some rearrangement,
find the differential equation

[z2(v) +51f" (v, 5) + 22" (v) f' (v, 5) = F"(v,0). (4.5)

1 In § 4.1 we retrace the method of Barker ef al. (19%77). An independent, but essentially similar, approach was
used by the late Pierre Résibois who, in brilliant, if insouciant, manner, derived the results of Barker et al. without
explicit reference either to the eigenvalue spectrum or the singular nature of the problem. Moreover his treatment
of the spatially non-uniform transport problem, to which we turn in §7, anticipates ours and is the first published
solution for this form of the Rayleigh model (Résibois 1978). See also the footnote to §5.3.
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The left-hand side proves to have the integrating factor z(v) +s and on using this we obtain a
solution of (4.4) in the following indefinite integrals:

Flo,5) f e f dw[z(w) +5] F" (1, 0) +a(s) f T +s]2 +b(s). (4.6)

Here a(s) and b(s) are functions that account for the lost boundary conditions. Since F” appears
under the inner integral, we can integrate twice by parts and have various choices of how to
rearrange the result. We adopt the following as easiest for division into parity components:

,0) v du
70 = a2, ey, dop 0 +40) [t B0, @

with A(s), B(s) still unknown. At this point there is a choice whether to substitute back into
equation (4.2) and its once-differentiated counterpart, or to take advantage at once of the parity
properties of the solution. Taking the latter course, we define components fev(?, s), foa(?, s) in the
usual way (cf. (2.20) and (2.21)) and, remembering that z(v) is even, obtain the two equations

Forlvys) = el [* s [ dw ey, 0) + ), (48)

boa(v,0) v
Sl ) = 2 e, w0400 [ 69)

The functions C(s) and D(s) remain undetermined but can be found by substituting back into
the parity-separated versions of (4.4). After lengthy integrations, requiring all the properties
(2.35)—(2.38) of z(v), we arrive at the expressions

C(s) =1/s (4.10)
and D(s) = —Y_(—zl);jf: dupoa(w, 0) Y(u,s), (4.11)
with Y (v, s) defined by Y(v,5) = f:rz—(—u—()il-tl-—}]_z (4.12)

The behaviour of the function ¥ (v, s) will prove to be crucial to the explanation of the results.t
In the solution so far it is clear that the function C(s) dominates increasingly as 7—> 00 (s— 0) and
provides the equilibrium distribution %,(v). The initial distribution is accounted for by the first
terms, dominant for s — 0, and the integrals represent the more or less complicated transient in
the intermediate time-range.

When we consider the Laplace inversion of the above formulae, it is clear that three very
different types of operation are involved. In the first the standard inversions #~1{s~1} and
ZLY[z(x) +5]7?} give rise to the equilibrium distribution /,(v) and the exponential transient
£(v,0) exp (—z(v) T) respectively. The second type of operation occurs in the terms that are a
functional of the initial conditions. Here we need to take the operator #-1 under the integral

t While formally we can identify ¥ (v, s) = R(v, —s), we are obliged to emphasize the role of Y as a function
of the complex variable s by the change of notation. Looking forward to equation (7.21) we may also note the
role of Y (v, 5) as the special case Y(v,5s) = U(0, v, 5).

26-2
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406 M.R.HOARE, S. RAVAL AND M. RAHMAN

sign, a procedure which can be justified, but which requires care. Thirdly, there is the altogether
more problematic operation

in which, we may easily anticipate, the difficulties of the odd singular eigenfunctions reside.
If we tentatively assume the inversion of the ‘distributed’ Laplace transforms to be valid, i.e.

that 3_1: f ”[_____z(udis] } f duexp [ —z(u) 7], (4.14)

u, )] (4.13)

we may collect the solution together in the form

p(v,7) = I’(v 0) ‘Z(”)’+ﬁo(v)

(mixed) (even)

27 hy(o [ f du g7 f dw po, (w, 0) f du -7 f dw pog (w, 0)]

(eve; (odd)

[ Ylos O ¥
+p ) fo(j:)pod< 0) ¥u9)| (4.15)

with the parities of the separate terms as marked.
The special case for p(v, 0) = 8(v—v,) is worth noting and, since the superposition principle
holds, can be said to imply knowledge of the above. We find that

(0,90, 7) = 8(v —vg) €W+ fy(v)

(mixed) (even)
© min (|v], [vol)

—Thy(v) [f dy e~ 4+ sgn (v) sgn (v,) f dy e—=w r]

max (|vl, [v]) 0
(even) (odd)

+ho(v) L B(v, vy, 5)], (4.16)

(0dd)
where B(v,vy,5) = Y(v,5) Y(vy,5)/Y(0,s). (4.17)

We shall see later thatimportant results, for example the velocity autocorrelation function S,(7), can
be obtained directly from the above equation without explicit evaluation of the inverse in the
last term. First, however, we shall consider the Laplace inverses —[Y (v, s)] and £~ B(v,v,s)]
in detail. Although the solution of the first is ‘elementary’, it is not a pure formality and the
intermediate stages in its proof are of direct importance to the second.

4.2. Regular inverses

Consider the Laplace inverse of the function Y (v, s) defined in (4.12). The inversion integral

reads Sty 1 [otio der 7 dy i1s

(Yoo =g [ e [t (418)
with the contour to the right of all singularities. Given that z(v) > 1 in the scaled variable, it is
clear that singularities are confined to the branch-cut running from s = — 1 to s = —z(v) on the
negative real axis. The bound 1 < z(v) < 1+ |v| ((2.40)) enables us to write

17(0,9)] < Jol/Is-+1]%, (4.19)
while we note for later use that
1
Y . 4.20
|¥(,) U (1+J+y)2 IRTENY (4.20)
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To find the required inverse we make up the closed contour shown in figure 5 and consider the
contributions for each segment in the usual way. In the limit R — co the contributions from the
segments marked I'f; and I', vanish, likewise that from the small semicircle as ¢ — 0. The integral
is therefore determined by the contributions from I', and I'_ along the branch-cut, which we
must now examine. Let s = A + ie be conjugate points across the cut and make the abbreviation

Y£(A) = im Y(v, — A t ie). (4.21)
Ims
B
o
Res
A

Ficure 5. Contour for the evaluation of the inverse transformation Z~1[B(v, v, 5)] of equations (4.17)
and (4.28). The branch-cut extending to — o0 is shown by the hatched line.

Then we can write the inverse
2(v)
LY (0,5)] = 2—;-1 f T e ¥-() - P (4.22)
On using the identity

1
lim

_Pf
e [2(0) = A £i€]* T [2(v) - AT?

tind'[z(v) —A] (4.23)
and its antiderivative

lim Y(v, — A i¢) = R(s, A) +ix f "dy'[2(y) = Al, (4.24)

€0
it is evident that the integral on the right is none other than the function g(v, A) defined in (3.66),
which arose in the singular eigenfunction solution. Thus we can assert that

Y*+(A) = R(v,A) +ing(v, /\),}
Y-(A) = R(v,A) —in g(v, A)
with g(v, A) the required combination of 8 and H-functions (cf. 3.66). Using these we find that

LYY (v,9)} = - f :" dv, e=#*07 z(v,) g(v, A)

(4.25)

= _f'”l dv, [EZ%%%] e T [H(v~|v,|) —H(—v—|v,])]

0
|v] —2(v,) T
=], dnry 30— feal) = 8w+ )]


http://rsta.royalsocietypublishing.org/

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

p
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

/ y

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

408 M.R.HOARE, S. RAVAL AND M. RAHMAN

On using the fact that z"(v,) /2 (v,)? = (d/dv,) (z'(v))~!) and integrating the first term on the right
by parts, we obtain a term exactly cancelling the second plus the expected transient term. In this
way it emerges that

LAY (0,5)] = 7 f " dy e, (4.26)
0
Reference back to (3.24) makes it clear that we can write

Penlts90,7) = o) + [ 7 A e By (0, 2) Pey(0,), (4.27)

recognizing that the 7 —> 0 form of this is just the completeness relation for orthonormalized
versions @ev of the even eigenfunctions @ev of equation (3.24). (We need not, of course, charac-
terize the above as ‘formal’ since there is no problem in inverting integrations.)

In this way we have both justified the taking of the Laplace transform inverse operator under
the integral sign and exposed the essential connection between the eigenfunctions ¢ev and
certain real integrals arising out of the even transform solution. We shall comment further on the
importance of (4.24) and (4.25) after treating the odd solutions.

4.3. Singular inverses
We now consider the inverse

1 fotie Y(vg, 5) Y(v,5)
-1 _ ST 0’ 2
LU B(v,vy,9)] vl P dse [ ¥(o0,5) ] (4.28)
The function fails to be analytic along the whole of the negative real axis cut from s = —1 to
§ = — o0, by virtue of the denominator ¥ (o0, s).t Moreover, the combination of the two bounds

(4.19) and (4.20) shows that
|B(0,0005)] < [ogo]/(L+ s+ 1]3. (4.29)

As before, we choose the contour shown in figure 5, noting that the above inequality guarantees
the vanishing of contributions from the large arcs. Once again the only contribution is from the
neighbourhoods of the branch-cut. This leads now to an infinite integral, and we find that

LB, 0,5)] = E:E f ® A e[ B-() — B+(V)], (4.30)
1
where Bx(Q) = lim B(v,v, — A £ i€). (4.31)
e—>0

Now the limit may easily be obtained in terms of the functions R(v, A) and g(v, A) by using the
result (4.25). Reassuringly, it emerges that

. Y(v, —A +ie) Y(vy, —A 1€
Boy g, — A 2ie) = 1 Y(oo,)—)f-:ie) )
Y(v, —A tie) Y(vy, —A £1i€) Y(c0, —A +1i€)

= R, AT T g(o0, A)F : (4.32)

1 The type of ‘distributed’ Laplace transform treated here is seldom considered even in otherwise compre-
hensive works. A rare exception is Ghurchill (1958).
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with the inevitable resemblance to the normalization factor Ny(A) of equation (3.75). Applying
(4.25) to the denominator we then find
B-(N) = B+() _ g(0,2) .
21 - A(A) [R(v> A) R(vo’ A) -T g(”o: A) g(v> A)]

R(o0, A)
A(2)

[R(v, A) g(vo, A) + R (v, A) g(v, A)]- (4.33)

Thus, by returning this expression to (4.30), it can be recognized that we have reduced the
desired Laplace inverse to a real integral. Moreover it will be clear that the form of this integral
is precisely that dictated by the odd singular eigenfunctions. To see this we take the ‘formally
orthonormal’ set @oq and note that these are related to the B-function through

ho(0) g(00, A} A [R(,) — R(00,A) g0, A)
Doa(n,) = | REAN] 200, ) | (4:34)
whence B—(A)2;IB+(A) — ¢od<v’ )2)?:())(1@0’ A) _g(v(l)g’();z.):g)(s: A) . (4.35)

The inversion integral has now become

() Z[B0,0,5)] = [ 4 Bog(v ) Pua(v, N e

and the second integral can be evaluated by parts. After sorting out the é- and H-components of
the g-functions, we find that

[t e L)

_ o4 (v, 1) e~H)7 min (Jo], |%])

X sgn (v) sgn (v,) tfo dye—=®7.  (4.36)

Both these terms are destined to cancel on their substitution back into (4.16) so that we arrive at
the now inevitable result

Poa(0,07) = [N B (0, 2) B0, 2). (4.37)

If we combine this with (4.27) after letting 7 tend to zero, we obtain the ‘formal’ completeness
relation

80=0) = ho(0) + [ 7 dA Doy 0, 1) Pen(0, ) + f AN Boq(0)) a0, ). (4:38)

Here we should perhaps emphasize that there is nothing contradictory about the appearance of
the regular term 4,(v) on the right: a precisely similar term arises to cancel it when the integrals
are interpreted, just as happens in the 7 — 0 limit of the transform solution.

With this we have completed the proof of completeness of both even and odd singular eigen-
functions by a method that is both simpler than that used in § 3.4 and constructive in character. Of
no less importance, however, is the recognition, through equations (4.22)-(4.25) and (4.30)—
(4.34), that the singular eigenfunctions ¢ev and ¢oq may both be represented by the discontinuity
in an otherwise holomorphic function on crossing the cut real axis. This is precisely the operation
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used by Bremmerman & Durand to define a new ‘analytic function’ approach to distribution
theory (Bremmerman & Durand 1961, Bremmerman 1965). It is a particularly satisfying result
of the present study that we may not only recognize the simplicity of the Bremmerman-Durand
approach, compared for example with that of Schwartz (1966), but are even, as it were, ‘forced’
to adopt it by the very nature of our model.

P(v, 7)

P(y, 1)

=38

—21rt — i 0 mh 27t

F1cure 6. Relaxation of initial §-functionsin velocity (Maxwellian heat-bath). The initial conditions are (a) P(», 0)
= 0(v—0.5n?) and (4) P(v,0) = &(v—1.5n?). The curves describe P(v, 7) for the times 7 as shown. The
position of the initial d-function is as indicated by dashed arrow, but its decay is not shown.

4.4. Numerical Laplace inversions

Our final observations in this section concern the use of numerical Laplace transform inversions
to effect the computation of p(v, 7) from equations such as (4.15) and (4.16). Though the algor-
ithms for numerical Laplace inversion are still little known, it is nowadays a relatively simple
matter to compute functions such as (1) = £~![B(s)] from the expression (4.17) and hence
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arrive at the full-range initial-value solution to almost any desired accuracy. The method of
choice is the Dubner—Abate (D.-A.) procedure based on the alternative inversion integral

ZL-UB(s)] = gi—mf: dy Re[B(s)] cosyr (4.39)

(s = x+1iy, x > 0;. X 'independent of x). This is first approximated by a Fourier series and then
summed, with an optimal choice of x, by using complex FORTRAN for the extraction of the real
parts.t Barker et al. (1977) computed the full-range relaxation of a ¢ initial distribution in a
Rayleigh-Maxwellian heat-bath by this method with results reproduced here in figure 6. This is
perhaps the first implementation of the D.—A. method for ‘distributed’ transforms and is an
excellent example of its usefulness. While one might contemplate the numerical evaluation of the
finite-part integrals involved in the singular eigenfunction method, it is doubtful whether this
could easily match the simplicity of the Laplace transform procedure.

(a)

/_\! T=01

FiGure 7. Separation of the parity components in velocity relaxation. (a) The odd component P, (v, 7) related to
particle flux. (b) The even component P,,(v, T) giving the speed relaxation. Both are for the initial condition
P(v,0) = 6(v—0.57?) and the same time intervals as in figure 6. Only the positive half of most functions
is shown, the negative part being the symmetrical or antisymmetrical continuation. The decay of the initial
d-function is here shown on a realistic scale.

The most general type of calculation we can do is that of the decay of an initial §-distribution
of velocity according to equation (4.16). The results for two different initial conditions are shown
in figure 6, the curves shown representing the growth of the regular part of p(v, 7) at the given time
intervals. The decay of the d-function is not represented but can be inferred from the areas under
the curves. Two qualitative effects are immediately apparent. First we see that there is no
question of the ¢-function ‘spreading’ about its base as would be natural in a diffusion-type

1 In practice various improvements on the formula (4.39) are possible, which incorporate Im [B(s)] as well as

Re [B(s)]. We refer the reader to the original work of Dubner & Abate (1968) and to Durbin (1974) for further
details.
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process with predominantly local transitions. Next we note the marked asymmetry of the
distribution p(v,7) with the most probable velocity always in the negative direction when the
singular component is excluded. This clearly reflects the anticorrelation of direction after one
collision due to the enhanced probability of a ‘head-on’ first collision for those particles in the
initial 8-distribution. The formation of a definite ‘shoulder’ on the positive side is presumably
to be ascribed to the significant proportion of particles that collide twice during about one mean
collision time. In figure 7 we have separated the two components pev(v,7) and poa(v,7), each
exhibited on the half-range. The main feature to be seen in the even component, corresponding
to p(|v],7), is the relatively slow relaxation of particles having nearly zero velocity compared
with that of particles in the high-velocity tails.

5. MOMENTS AND AUTOCORRELATION

As with any physical stochastic process, certain derived quantities, comprising less information
than the full probability distribution function, are of considerable interest. Here we shall confine
our attention to three of the most simple: the first moment of velocity, the first moment of speed
and the velocity autocorrelation function.

5.1. The mean velocity

In forming the time-dependent first velocity moment, denoted (v(7)), we clearly need only
consider the odd component of the distribution p(v, 7). Thus

((r)y = f " dopn,) =2 f " dvopoa(s,). (5.1)

If we now specialize to p(v, 0) = &(v—1,), writing the mean as {v(7) |v,), its time-dependence can
be derived by direct integration of the solution (4.15) giving:

© min ([v], |v|)
(u(7)|vg) = vye™7 —25sgn (v,) ’rf dv v}z(,(v)f dy e—2)7
0 0

Y(xy, 5) [
—1 0
+2 9 [———Y(w, : f " dulo() Yo s)]. (5.2)
On using the identity (d/dv) [vz'(v) —z(v)] = 2vky(v) and the integral
2 j ® dvohy(v) ¥(0,5) = 1—s¥(c0,5), (5.3)
0
while noting that, by the derivative theorem of the Laplace transform,
Y(o,5) =2 |2 [+ [ dge-sw
<o fer])

we arrive at the simple result
(7)|ve) =L [X(v,,5)/ ¥ (0, )] (5.4)

It is easily confirmed that this contains the correct initial condition (»(0) [v) = v, and implies the
symmetric equilibrium {v(0)|v,) = 0. The principle of superposition converts all these results
into equivalents for the evolution of a distributed initial state.
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On applying the results of §4 to the evaluation of the inverse, the above can be expressed
equivalently in terms of integrals over the singular eigenfunctions. The final result is then

() ve) = f: doy A(A) 712" (v3) €W 7[R(vg, A) g(0, A) = R(00, A) g(vg, A)], (5.5)

with g(., .) as always the function defined in (3.66). While this equation is explicit in time and
mathematically more interesting, equation (5.4) is to be preferred for numerical calculations (see
§5.5). :
5.2. The mean speed

Asis to be expected, the determination of the speed relaxation is relatively simple since only the
even solution is involved. The result follows directly from (4.15) after some obvious partial inte-
grations. For the initial é-distribution we find

o) 1oy = [ olzts) = 7= 17 s, (5

other possibilities being represented as before by superposition. This equation brings out
particularly clearly the complete lack of ‘exponential’ character in the solutions, whatever the
time-régime.
5.3. The velocity autocorrelation function
The simplicity of the velocity autocorrelation function showsitself further in the autocorrelation
function for equilibrium fluctuations. This we define as

$,(7) = ((0(0)|o0) (4(7)[90)eq
= 2 [ dguy h(wy) Co(r) o), (5.7)

the first expression indicating an average over the equilibrium ensemble. The function S,(7) is

both an interesting characterization of the system in itself and the starting point for calculations

of the response of a Rayleigh ensemble to external perturbations, such as an electric field.
Application of the transform solution (4.15) in the above integral gives

1 [co]
—9wp-1|__ -
Sy(1) = 2Z [Y(OO, 5) fo dvg g g (v) Y (v, 5)] )
which simplifies to Sy(1) =LY (00, s) 1 —5]. (5.8)

In spite of its appearance, this inverse is not in fact singular and can be used as a computational
algorithm for S§,(7). The corresponding expression in singular eigenfunctions is derivable as

before with the result ® dv, 2'(v,) g(00, A) =207

So() = o R(c0,A\)E+m2g(co, A)?

(5.9)

The long-time asymptotic behaviour of the function S,(7) is of particular interest and its
analysis provides a rare example of ‘non-standard’ Laplace transform theory. The essential
problem is to find the corresponding behaviour of the function Y (s, c0) for s — 0, which must
dominate the inverse (5.8). Using the derivative theorem for the transform, we have first that

$¥(0,5) = 2§21 ¥(00,5)]) + 24X (o0, 9],

= &£ {(% [TJ:O duexp (—z(u) T)]} , (5.10)
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since the second term (equal to lim,_,,, s¥ (0, s)) is negligible at long times. Now the integral
can also be treated asymptotically by using the expansion (2.39) for z(v). In this way

J:ducxp(—z(u) 1) ~ f:duexp[(—-l—/zo(O) w2+ 0(uh)) 7]

T—>00

~ Y /hy(0)Jir e,

T—>0
Constructing the previous expression we then find that

$¥(0,5) ~ 3 /ho(0)RLTr4(1 —27) 1.

s—>0
Now the Laplace transform on the right exists and is equal to n# s(s + 1) %, so asymptotically

¥(c0,)* ~ () ho(0)} (s+ D). (5.11)

Returning to equation (5.8) we see that the asymptotic dependence in time is singular in
precisely the sense of the formula

L1(s?) = Pf[r 21T (—a)]H(1) (a>0;a%#1,2,...)

(cf. Doetsch 1974, Appendix). Since the singularity at 7 = 0 is irrelevant for present purposes,
we can assert the asymptotic relation

Sy(1) ~ 4n—Ehy(0)i1-EeT. (5.12)

On consideration of the form of (5.12), it would seem that the nature of the heat-bath enters
only through a constant factor, the asymptotic time-dependence 7-%e~" being a universal
characteristic of all Rayleigh models. T

5.4. Transport properties

As we have already indicated, the study of equilibrium fluctuations can lead both to a useful
characterization of the system free of initial conditions and to definite computations of transport
properties. The route to the latter lies through the well known Kubo formulae of linear-response
theory (Kubo 1958, 1965). We shall see that these formulae take on a particularly simple aspect
when interpreted through the Laplace transform of the velocity autocorrelation function in the
spirit of the present derivations.

5.4.1. Self-diffusion

The Kubo formula for this case relates the self-diffusion coeflicient D, for a test-particle to its
velocity autocorrelation by

D, = f : S, (r) dr. (5.13)

1 Equation (5.8) was first given by Barker et al. (1977) and discovered independently by Résibois (1978).
Note, however, the serious misprint in Résibois’s equation (3.5) where s appears as 1. This makes the following
equation (correctly equivalent to our (5.14)) incomprehensible and also tends to disguise the singular nature of
the problem.
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This invites use of the Laplace transform integral theorem

[T sumer = 2P0

. . © dy -1
by virtue of which : D, = Y(c0,0)1 = [f ——] . 5.14
Yy virtu w 0 ( ) o z(y)z ( )
The integral is rapidly convergent and can be evaluated numerically for the Maxwellian heat-
bath with z(v) given by equation (2.46). We shall collect all numerical results on transport
properties together in § 5.5.

5.4.2. Admittance and electrical conductivity

One of the most engaging aspects of the Rayleigh model is the question of how an ensemble of
charged test-particles responds to an alternating applied electric field. The answer is provided
by the generalized admitiance of the system, o, which quantity is again available through a linear-
response formula. After Kubo, we now have that

o(w) = I‘;—z f : eior 8. (r) dr, (5.15)

in which S,(7) is the dimensionless velocity autocorrelation function and D, the self-diffusion
coeflicient already introduced. The quantity o, represents the d.c. conductivity, related to the
unscaled diffusion constant D through the Stokes—Einstein relation oy = De?/kg T. Knowledge
of the admittance as a function of frequency provides (a) the net current flowing in the system
(proportional to |o|), (b) the rate of dissipation of electrical energy into the heat-bath (pro-
portional to Re (o)) and (¢) the phase-lag between current and field (arctan[Im (o) /Re (o7)]).

The Laplace transform solution again provides a direct route to these quantities. We have only
to substitute —iw for s in equation (5.8) to obtain

) IS S
7(0) = 5! [Y(Oo’ — +1a)]. (5.16)
Writing the real and imaginary parts explicitly we find
Re[0(0)] = m—oral fwdu _2(u) —0? (5.17)
D,y 70, 1)t )0 2w+ o ] '
_ Ty o ° _2() du
and Im[o(w)] = Dy [T (o, —10)]* [1 2[0 O +a)2]' (5.18)

From these equations we see that the frequency responses of both |o’| and Re o show a broad
decay from the maximum, d.c., value to zero at high frequencies, there being no possible tendency
to resonance. Numerical values presented in the next section illustrate these aspects in detail.

5.5. Numerical computations

The numerical methods described in §4.4 provide excellent means of calculating all the
quantities expressed as inversions of a Laplace transform. Again we work directly with equations
(5.4), (5.8) and (5.16) using complex FORTRAN for the integrals and extracting real and variable-
imaginary parts as required. We shall only be able to present a selection of the many possible
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results here. All calculations refer to the Maxwellian heat-bath described in § 2.4 and we caution
the reader again that the scaled velocity, v, used here differs from the velocity x used in Hoare &
Rahman (1973), Barker ez al. (1977) and Raval (1978) by the factor nt.

5.5.1. Autocorrelation functions

In analysing the autocorrelation of equilibrium fluctuations, one of the main questions of
interest is the extent to which the function S,(7) deviates from a pure exponential decay. While,
for the Rayleigh model, equation (5.9) shows that there can be no question of a single exponential
transient, we cannot immediately rule out the possibility that the distributed transient appearing
there might prove to be close to an effective exponential at least in some important time-régime.
The question is of more than passing interest in that conjectures have been made in the literature
to the effect that a/l Markovian kinetic processes may be well approximated by a pure exponential
autocorrelation §9(7) fixed by the initial slope of the actual function [0S,(7) /d7)],_, (Cukier &
Hynes 1976).

In S,(7)
7/

T

Ficure 8. The velocity autocorrelation function for equilibrium fluctuations in an ensemble of Rayleigh test-
particles (Maxwellian heat-bath). The solid line gives the value obtained by numerical inversion of the
expression in equation (5.8); the dashed curve is the asymptotic approximation of equation (5.12); the
dotted curve results from the estimate S,(1) = §,(0) exp {— [0S,(1) /7] 7} (Cukier & Hynes 1976).

Figure 8 shows the decay of the velocity autocorrelation function of equilibrium fluctuations
for a Rayleigh test-particle in a Maxwellian heat-bath, calculated by numerical inversion of the
transform (5.8). The compensation of singular terms in the inversion integral of the D.—A. method
was found to give no problems. The solid line representing the logarithm of the true function
S,(7) may be compared with the dashed line representing the asymptotic result (5.12) and the
dotted line resulting from the estimate S,(7) = S,(0) exp { —[0S,(7) /07],_,7} according to Cukier
& Hynes. It is clear that the decay is significantly non-exponential at all times, as would
be expected from the character of the spectrum, though perhaps rather less so than if the
continuum were to fill the whole interval A€ (0, c0) rather than (1, 0). The asymptotic result
is remarkably good for all times appreciably greater than one mean collision-time.
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5.5.2. The diffusion coefficient

An evaluation of the integral (5.14) with z(x) for the Maxwellian heat-bath (2.46) leads to
the result D, = 1.031053... in the present scaling. Reverting to unscaled units we find this
equivalent to

D = 1.82749...(na)~' (2kg T/nm)?,

the algebraic factor being the mean-free-path approximation to D in one dimension (z is the

number density of particles, a the particle cross section). The excess over the mean-free-path
value is not surprising and presumably reflects the predominant contribution from fast particles
in the ensemble.
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Figure 9. (a) Frequency dependence of the real and imaginary parts of the admittance, o, for charged Rayleigh
test-particles in a Maxwellian heat-bath. (b) Current in a charged Rayleigh test-particle ensemble as a
function of applied frequency. (¢) The phase-lag arctan[(Re ¢)/(Im )] under the same conditions. The
ordinates in (a) and (b) are in arbitrary units.

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

418 M.R.HOARE, S. RAVAL AND M. RAHMAN

5.5.3. Electrical properties

Values of the complex admittance o(w) were computed directly from equation (5.16) by using
a complex FORTRAN quadrature for the integral Y(co, —iw). The values of Re[o(w)], Im[o(w)]
and |o(»)| could then be tabulated as required.

The results, shown here in figures 9a—¢ correspond broadly to physical intuition. Thus, as to
be expected, the dissipative component Re[o(w)] is a maximum under d.c. conditions, falling
with a bell-shaped decay to zero at high frequencies, though frequencies well in excess of the value
z71(0) are required effectively to suppress all energy-transfer from the field. Similarly, the current
|o(w)| decreases with frequency, though with a less rapid approach to zero. At the same time the
phase of current with respect to applied field lags systematically, the phase-angle increasing
regularly from zero to n at infinite frequency. No vestige of resonance is seen.

6. PASSAGE-TIME PROBLEMS

An interesting, though little considered, aspect of the Rayleigh model is the computation of
passage-time statistics in the presence of an absorbing barrier in the particle speed. Both upper
and lower barriers can be considered, the former corresponding to the removal of fast particles
at a hypothetical activation energy E' for some chemical reaction, the latter to their removal at
some lower threshold E,, perhaps also by chemical means. In fact both types of process are
known in real systems of interest in ‘hot-atom chemistry’ (see for example Shizgal & Karplus
1971).

Although absorbing-barrier problems have been of interest for some time in physical chemistry
(Montroll & Shuler 1958, Hoare 1964), most attention has been paid to the upper-barrier
problem for internal degrees of freedom, such as vibration in molecules, and very little is known
about systems without constant collision number, that is those with singular scattering kernels.
The Rayleigh model appears to be the first known example of a singular Markovian model that
is susceptible to a full passage-time analysis and we shall therefore examine it in detail, con-
sidering both upper and lower barriers. The most useful tool for this purpose will again be the
Laplace transform method, but in using this we shall also be able to perceive the way in which the
spectrum of the transition operator is modified by introduction of the barrier.

If we remember the equivalence between 2pev(v, 7) (half-range) and p(|v|,7) (full-range), we
may concentrate on determining the former in a manner which, up to the fitting of boundary
conditions, is broadly parallel to the ordinary initial-value solution described in § 4. 1. For brevity
let the even components of the modified transport equations be written

or 0

Sex®:1) _ o1 10) [ f "OR fw du] max (i, ) pev(s, 7) — 2(0) pev(v, 7) (6.1)

and their Laplace-transformed versions as

[2(0) + 5] fou(t, ) = 2 [ f :* OR f “: du] max (4, 0) ho(t) fou(t, 5) + Fev(s,0).  (6.2)

Here we have put pev(v,7) = hy(v) Fev(v,7) and fev(v,s) = L[Fev(v,7)] asin (4.1) and (4.3). We
may now recognize that both alternatives correspond to the same differential equation (4.5) and
that solutions similar to (4.8) may be constructed to satisfy the respective boundary conditions
JSev(v',7) = 0 and fev(v;, 7) = 0. The two types of barrier will now be considered separately.
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6.1. The upper absorbing barrier

Specifying the upper-barrier solution as fev(v, 9!, 7), we see that equation (4.8) is modified to

fev(v, vt,s) = (peV(v 0_1_5] f [Z u) +S]2f dwﬁev w, )+C(5 1)), (6.3) »

with the function C(s, v") to be determined by substitution back into the integral equation (6.2).
Carrying out this process, with the use of the previously introduced partial integration formulae
and properties of z(v), we arrive at the result

N 1 1
Cls,0) = 2'(v") [z(v*) +s5—=0'Z'(v")  z(v") +s]’ (6.4)

indicating the occurrence of two distinct exponential transients. The inversion of the transform
is straightforward and we arrive at the explicit solution

p(Jol,0'7) = p(|v], ', 0) =7+ :(()(Y)) [exp{[—2(+") —v'2'(+")] 7} — exp [ - 2(+") 7]]

—2Th0(v)fv due‘““)’fo dwp(|w|,2t,0) (|o] <ot). (6.5)

To obtain the response to an initial §-distribution, we have only to write (v —1v,) exp[ — z(v,) 7]
for the first term and in the last write a single integral with lower limit max (|v|, |v,|). Thus we
have a solution which can accommodate regular and singular initial conditions equally well,
including the rather natural case of an initially ‘cold’ ensemble: p(|v|,", 0) = &(v).

An interesting feature of the above is the privileged position of the Maxwellian heat-bath
distribution. Recalling the relation (2.47) which holds only for the Maxwellian, we see that the
second term simplifies such that, in the present scaling,

—v2r

o) T 2e Lyt D7
(o], 0", 1) = p([v], 2", 0) e +W[CXP(—TW 1e—vtin) — e#v)7]

21 e—v%"

vt u
f du e‘z(“”f dwp(|wl|, v, 0). (6.6)
v 0
This equation, in the alternative scaling, was first derived by Hoare & Rahman (1976).
One further special case is worth mention. If we take the initial condition
p([v],0',0) = 2hy(v) /2’ (v"); O < v <o,
=0; o<y, (6.7)

which (N.B. (2.85)) is an equilibrium distribution rescaled to the interval (0, ¢'), we find, after
a number of cancellations, the very simple result

p(Jol, 0", 7) = [2ho(0) /2' (")) exp [ - (2(o") —0'2' (") 7)]. (6.8)
The meaning of this is that, if we take an equilibrium distribution and suddenly ‘switch on’ the
absorbing barrier at 7 = 0, then the subsequent relaxation maintains the shape of the heat-bath
distribution as it decays with rate-constant

Ao(vh) = z(v') —v'Z' (o). (6.9)
As to be expected, Ao(¢") — 0 as v' — oo and the effect of the barrier is nullified (N.B. (2.38)).

27 Vol. go5. A
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The above property is related to some further results of surprising simplicity. Let C(r) represent
the proportion of unreacted particles, those that have not passed the barrier at time 7. Then, on
integrating the solution (6.5), we find, after various cancellations, that

ctr) = [ 7) = expl =o)L, (6.10)

with A,(v') as before. At the same time the distribution function for passage-times to the barrier
is evidently
wy(r) = —[dC(r) /dr] = A(o") exp [~ Ao(v")7], (6.11)

and its first moment the mean first-passage time to reaction is

(1)) = f:'rwl('r) dr = f: Cr) dr = [A, (1] (6.12)

L | A
0 x*
Ficure 10. Eigenvalue spectra in relation to barrier height for the Rayleigh scattering operator truncated at an
upper velocity absorbing barrier v'. (a) Spectrum for unperturbed relaxation (v' — o0). (4) Intermediate case.
(¢) Spectrum for the limiting régime »' < 1. The value of A,(v1) is given by equation (6.9).

In all the above the further simplification Ay(v") = Ay(v") = n~'exp (—¢'%/n) applies when the
heat-bath distribution is Maxwellian. If we now define an activation energy €' = v'2/n in scaled
units, it is clear that the above result is an ‘ Arrhenius Law’ for the energy dependence of a first-
order rate-constant. To put this into more familiar form, we return to the unscaled variables
(equation (2.41) ¢t seq.), define E* = 1M V2, and obtain

Ao(E") = Aexp[— (E'/kg T)], (6.13)

with T the heat-bath temperature, and 4 dependent on the time-scaling.

Finally we return briefly to the relation between these results and the effect of the absorbing
barrier on the spectrum of the transition operator. If we repeat the argument set outin § 3.1, this
time with the barrier introducing an upper limit in the integral operator, we arrive at a condition
involving the integral R(v', A) instead of R(co, A). This can only be satisfied by the single discrete
eigenvalue A (v") in precisely the form (6.9). At the same time there must be an upper limit to the
continuous spectrum imposed by the condition z(v") = A', since no transients faster than this can
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contribute. The net effect is thus that, as ' — 0, the single discrete eigenvalue encroaches on the
point A* = z(0) while the whole of the continuum is compressed towards the same from the other
side. In the extreme case the system shows only the single transient exp ( — A*7) since only those
test-particles with effectively zero velocity survive beyond 7 = 0 to contribute. This process is
illustrated schematically in figure 10.

A computation of the evolution of various initial é-distributions in the presence of an upper
barrier with the use of the solution (6.5) is illustrated in figure 11.
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Ficure 11. Relaxation of four different d-ensembles of Rayleigh test-particles in the presence of an upper velocity-
absorbing barrier and Maxwellian heat-bath. The vertical arrows represent the probability mass remaining
in the é-function, scaled to unity by the dot. The column on the right gives the integrated flux over the
barrier scaled to unity by the horizontal bar. The figures give the elapsed time in reduced units. The positions
of the initial §-function, vy, and the barrier height, ¢!, for the four cases are:(a) v, = 0.0, v = n}; (§) vy =0.5nt,
ot = nd; (¢) v, = 0.0, o' = L.5r}; (d) v = 1.0mE, o' = 1.5} Results were computed from equation (6.5).
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6.2. The lower absorbing barrier

Although not obviously so at first sight, the lower-barrier problem proves to be considerably
more complicated than the upper-barrier case. The difficulty lies in the nature of the boundary
conditions, which now require vanishing of the solution as » - v, from above, the function
2(|Jv|, v, 7) being now interpreted on the infinite range v€ (v,,0). To keep the manipulations
under control we shall this time consider the d-function initial condition from the outset. On
examining equation (4.6) simplified in this way, it becomes clear that the only adequate solution
must take the form

Py (1) _ vo) max (v, v,) du , , v du
Sv,s5) = XOIEOED] + f Y FOESL +C'(s,v,) +D'(s,v,) NEOESE (6.14)

and that this will contain mixed odd and even components. Because of the two undetermined
functions C’(s, v,) and D’ (s, v,) we must substitute back into both the integral equation (6.2) and
its once-differentiated form. After considerable work, we find these functions to be given by

z'(vy) [2(vy) + 5] [sR(vg, 20, 5) — 1]

D) = G0 o) + 5101 — 3Ry, 00, )T +5) (619
and C'(s,v,) = 1/s[1=5R(v;,00,5)][1 + D’ (5,9,)], (6.16)
with R(a, b, s) a modified form of the previous R-integral defined as
b
R(a,b,5) =faf2(y_'§%§]-2' (6.17)
The required solution then takes the form
Bl 7) = (10, 0) e-soor [ s
t

+ L C (s, 0,)] +ZL D" (5, v,) R(wy, 9, 5)]-

No further progress in reducing the two inverses analytically seems possible. They must therefore
be treated numerically and the solutions for the initial J-distribution superposed if distributed
initial conditions apply. In spite of the complicated appearance of the results, it may be verified
that the even component of equation (4.16) is correctly recovered in the limit », — 0. As may be
suspected, the increased complexity found in the lower-barrier problem reflects the dominant
contribution of the continuum eigenfunctions of both odd and even types. In fact it may be shown
that the single discrete eigenvalue A,(v") present in the upper-barrier problem is absent when the
lower barrier introduced.

7. THE SPATIAL TRANSPORT PROBLEM

In the remaining sections of this paper we shall address the more demanding problem of the
spatially inhomogeneous Rayleigh model, in which particle density itself evolves in time along
with the velocity distribution. Various versions of this problem have been treated in the literature,
notably by Nelkin & Ghatak (1964), Rahman et al. (1962) and, more recently, Résibois (1978).
The problem is, of course, a long-standing aspect of neutron transport theory (see, for example,
Williams 1966, 1971; Corngold 1964), though authors writing from the standpoint of ‘kinetic
theory’ and the linearized Boltzmann equation have consistently failed to recognize this.
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Nevertheless Résibois (1978), in a somewhat cryptic paper published just before his death, has
left us with what amounts to a complete solution of the spatially inhomogeneous special Rayleigh
problem. In this study some of the conclusions of Barker et al. (1977) and Raval (1978) are
arrived at independently, though the latter’s results are significantly extended by the removal of
restrictions on the initial condition. The Résibois approach is, however, at some distance from
the concerns of particle transport theory, makes no explicit reference to the singular nature of the
scattering operator and its eigenvalue problem, and leaves a number of interesting particulars
unexamined. We shall therefore derive a more explicit form of the solution in the present context
while relating it to the earlier work cited and using the exact results now available to check the
various approximations suggested there.

Our main object of interest is now the spatial-velocity distribution function p(x, v, 7) in which
the scaling of distance x € ( — 00, + 00)is taken to be thatset outin §2, namely x = [Z(0) /V;] X with
Z(0) the true collision frequency for stationary test-particles and ¥, the true mean speed for the
heat-bath. Two types of normalization may be applied. Either (2) we assume p to be distributed
over all space in the sense that

foo dxfoo dvp(x,v,7) =1, forall r (7.1)

or () we take periodic boundary conditions such that
z+1 ©
f dxj dvp(x,v,7) =1, forall 7 (7.2)

with the implication that (x,v,7) = p(x+/,v, 7). In the former case it is appropriate to study the
decay of a given initial distribution to an infinitely sparse state as 7 — oo; in the latter we study
the approach to spatial homogeneity at given linear density. However, only alternative (a) will
be taken up here.

The most general initial-value problem in these terms is where, at zero time, p(x,v, 0) is an
arbitrary bivariate distribution in position and velocity of the test-particles. However, a variety
of special initial conditions are possible, several of which are of particular interest. We note the
cases:

p(%,0,0) = p(x) (v, 0) (7.3)
(positions and velocities initially uncorrelated),
ﬁ(x, v, 0) = 8(x)p(v, 0) (7'4)
(particles released at the origin with distributed velocities),
ﬁ(x, v, 0) = p(x) 3(1)—-1)0) (7~5)
(particles with identical velocity and distributed positions),
ﬁ(x, U, 0) = p(x) ho(v) (7'6)
(particles with equilibrated velocity and distributed positions),
p(x,0,0) = &(x) hy(v) (7.7
(particles released at origin with equilibrated velocity),
p(x’ v, 0) = 3(x) 3(1}—1)0) (7'8)
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(particles released at origin with identical velocities). Still other variations are possible if we
specify the parity of the initial spatial or velocity distributions or both. Since, however, the
system remains linear, the superposition principle allows us to work with the ‘fundamental’
solution, corresponding to (7.8), and construct all other cases from this if we wish.

While the eigenfunction approach to the problem is possible, and has figured prominently in
neutron transport theory, the difficulties arising are enormously compounded on passing from
the uniform to the spatially inhomogeneous case. We have, in fact, little choice but to stay within
the framework of transform methods, and this we shall do apart from some general concluding
remarks. Our approach will be to assume completely general initial conditions p(x, v, 7) through-
out, avoiding the restriction to d-functions (as in Résibois 1978) or initially equilibrated velocities
(as in Raval 1978). These and other particular cases will then be considered by specialization of
the main result. .

7.1. Solution of the general space- and time-dependent problem
Our starting point is the full transport equation (2.4) with the Rayleigh kernel, namely

[6%”5% +z(v)]!’(x, v,7) = hy(v) fl du |v—u| p(x,u,7). (7.9)

Assuming the most general initial condition, we define

plkyv,7) = ® d e~k p(x,0,7) (7.10)
(spatial Fourier transform), -

p(x,v,5) =fwd7'e‘37p(x, v,7T) (7.11)
(temporal Laplace transform), ’

Blk,v,9) = f : dr e p(k,,7) (7.12)

(Fourier-Laplace transform). Applying first the Fourier transform in the spatial variable we
obtain

[a—aT +ikv +z(v)]l’(k, v,T) = ho(v)f dulv—u| p(k,u,7), (7.13)
whence, by Laplace transformation and introduction of the new dependent variable

S (k,v,5) = B(k,v,5) /ho(v), (7.14)

we arrive at the pure integral equation

[z(v) +ikv + 5] f (K, v,5) =j:) du |u—v| ho(u) f(k,u,5) +

R
After differentiation twice with respect to velocity, this leads in turn to the singular differential
equation ) ,

[2(0) +ikv +5] J" (K, v, 5) + 2[2' (v) +iK] J' (K, 0,5) = [p(k,0, 0)/ho(v)]"- (7.16)
(Here and throughout primes will be taken to refer to differentiation with respect to the velocity
variable.)
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We can see already the considerable simplification that results from the assumption of an initial
distribution that is uncorrelated in position and velocity and has velocities equilibrated to £y(v).
Avoiding this easier option, we next define the auxiliary function

Q(k,v,5) = z(v) +ikv +s, (7.17)
in terms of which the differential equation can be written
[2(k,v,5)2 F' (K, v,5)]" = 2(k, 0, 5) [p(k, v, 0) /o (0)]". (7.18)

Observing that this has an integrating factor £2(k, v, 5), the solution may be found directly in the
form

v du vduy(ke)  v'(ka)
Flkyvys) = A(k,s)+B(/c,s)fo Q(k,u,s)2+2f0 G, (19)

with y(k,v) conveniently defined by
(k,v) = f B(k, u, 0) du. (7.20)

Here A(k,s) and B(k, s) are functions of integration still to be determined and we do not exclude
the possibility that p(k,v, 0) may be singular.

We now need to determine 4 and B by substitution of the solution (7.19) back into the integral
equation (7.13), a process which evidently requires the evaluation of the following three integrals:

_(” v__dy
= [ dulr—io [ gt

_of | “dyy(k,y)
h =2 __mdu]v—u]ho(u) .Q(lc,y,s)z’

J‘ du |v u| p(k,u,0
L= Q(k,u,s)?

Defining now the further integral

Uk,v,s) = (7.21)

f Q(k,y, )’ y,S)Z’

and making use of the identities
2 ([2/(0) +iK] Uk, 0,5) + Q(k0,5)71} = 2°00) Ulhy 0,9),
{v.Q (kyv,8) 1 =[2z(v) —v2' (v) +5] U(k,v,5)} = vz"(v) U(k,v,s),

together with z"(v) = 2k,(v) and z’(o0) = 1, we arrive by now familiar partial integrations at the

value of I;:
L = Q(k,v,s) U(k,v,s) —3o[(1 +ik) U(k, 00, 5) — (1 —ik) U(k, — o0, 5)]

+_{m~1—: —S[U(k, 0,5) — Uk, —oo,s)]}. (7.22)

The complex function U(k,v,s), which is central to our final results, has the limiting value
U(0,v,5) = Y(v,s) (cf. (4.12)). We also note that, because of the symmetry z(—v) = z(v), the
combinations occurring above have the character of

U(k,v,s)— Uk, —v,s) = 2Re{U(k, v,s)},}

U(k,v,s) + Uk, —v,s5) = 2Im{U(k,v,s)}. (7.23)


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

”/\\ \\

| A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

426 M.R. HOARE, S. RAVAL AND M. RAHMAN

In describing the integrals I, and I, further simplifications will be necessary. We define the
additional functions

vdyy(k,

Vik,v,5) = . Q———y(]z(y’s)g, (7.24)
vdy p(k,y, 0

Filko,s) = [ b, (7.25)

vd k,y,0
ik = [ R, (7.26)

These may be shown to satisfy the derivative properties

|20V i8] Pk 0,5) =Kk 0,5) + 2 = 270) Pk,

and %{ Q—”—-——“(Vé"v”z) Tk, v,5) —[2(0) + 02 (0) +5] Viky, s)} — 02"(6) V(k,1,5),

which, together with the limits y(—o0) = 0, z’'(c0) = 1, 2(k,00,5)~* = 0 and

[ oy(kv) 1 _ y()
hm[!)(k,v,s)]=1+ik

v—>0

lead to the desired results. If we suppress for the moment the arguments £ and sin the V-functions,
the second of the required integrals can be shown to be

1, = 2Q(0) V(v) —2[V3(v) - F(v)]

= o{[7(e0) = P(—c0)] +k{P(e0) + P —co)] + o) — o) 4 4~

0 [1(0) + V(—o0)] - [Fa(e0) +F5(~o0)]. (7.2

Similarly we arrive at
I, = 20%}(v) — 2%;(0) + [V4(00) + P — 00)] —o[F4 (e0) +F;(— 0)]. (7.28)

The way to the solution of (7.13) is now clear. We substitute the expression (7.19) back into
the integral equation using the above integrals and find for the left-hand side and right-hand
side respectively the expressions

Q(k, v, 5) [A(k, s) + Bk, s) U(k, v, ) + 2V (k, 9,5)] +p(k, v, 0) [ho(2),
and A(k,5) 2(v) + Bk, $) I + I + I+ p (K, v, 0) [ o 0) .

Since the function z(v) cancels on both sides, it remains only to force a solution by equating the
constant terms and those proportional to v to obtain two separate linear equations in the unknown
functions 4 (k, s) and B(k, s). These are then straightforwardly solved. The results are cumbersome,
but may be expressed as follows

B(k,s) = [sd(k,s) +ikc(k,s)]/[sb(k,s) +ika(k,s)]; (7.29)
Alkys) = [alk,s) Blk,s) —c(k, )1/, (7.30)


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE RAYLEIGH MODEL 427
where alk,s) = I‘%’TTL —s[U(k, 0, 5) + Uk, — 0,5)], . (7.31)
b(k,s) = [Ulk, o0,5)  U(k, —c0,5)] +ik[ Uk, o0,5) + U(k, —00,5)], (7.32)
c%g=mwwwm+w@—@¢p?f2, (7.33)

d(k,s) = — 2[V(k, 00,5) — V(k, — 00, 5)] — K[ V(k, o0,5) + V(k, —c0,5)]. (7.34)

We recall that the combinations of U-functions imply the simplicity of the relations (7.23) and
note that the V-functions behave likewise provided that the function $(x, v, 0) is of even parity in
the velocity.

Equation (7.19) with the functions 4 and B interpreted through equations (7 29)-(7.34) thus
constitutes a complete solution of the spatially inhomogeneous special Rayleigh model, to within
- inverse Fourier and Laplace transforms. As is clear from the structure of the above equations,
little can be done to write explicit expressions in the space and time variables; nevertheless the
above provides a direct algorithm for the computation of p(x,v,7) at all times.

7.2. Special cases of the spatially inhomogeneous solution
The complexity of the above general result is somewhat more typographical than profound,
as we shall see on examining the rich structure of special cases embodied in the equations. We
shall first recover the Résibois result, applying to delta initial conditions then go on to examine
an initial Maxwellian and the limit of spatial uniformity leading back to the results of § 4.

Case (). Uncorrelated initial distribution

We need only note that, for an initial condition p(x,v, 0) = p(x) p(v, 0), (7.3), for which then
p(k,v,0) = p(k) p(v,0), the above results hold with a simplified definition of the V-integrals.

Indeed we can now write V(k,v,s) = p(k) V(v,s) with
7 duy(uw)
V(v,s) = o 00k, u,5)° (7.35)
and ﬂﬂ:fvdwwm) (7.36)

Note that, unlike for correlated initial conditions, we can here write y(c0) = 1 by normalization.

Case (ii). Initial S-distributions
For the initial condition p(x, v,0) = 8(x) 6(v —v,), the above simplification applies with §(k) = 1

and © du H(u~,)

bt =) aus

= U(k,00,5) — U(k, vy, 5). (7.37)

If we then, without loss of generality, take v, > 0, it follows that V (£, — o, s) = 0. Reconstructing
the solution above, the functions 4 and B are now more manageable and we can write

[25+ (1 +ik) /(1 —ik)] [U(k, 0, 5) — Uk, vy, 5)] = [(1 —ik) /(1 +ik)] U(k, — 0, 5)
SO, o0, 5) — Uk, —0,5)] + 2k2/(1 + )

s[U(k, 0, 5) — U(k, vy, 5)] +ik/(1 +ik)
STUk, 0,5) — Uk, —c0, )] + 2R/ (1+ K"

Ak, s) =

, (7.38)

- %B(k> 5)

(7.39)

The solution with these values is identical with that obtained by Résibois (1978).
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Case (iii). Equilibrated initial velocities

We consider now the important special case (7.6) in which the particles are initially equi-
librated to £,(v) in velocity but spatially distributed with density p(x). Returning to equations
(7.16) and (7.18) it is clear that both become homogeneous by vanishing of the derivative on the
right, with the consequence that the solutions take on the simpler form

Fkyv,5) = A(k,s) + B(k,s) U(k,v,s). (7.40)

In addition since p(x,,0) = p(x) hy(v) and p(k, v, 0) = g(k) hy(v), we can write

Ylb) = 1508) [ o)

= 3p(K) [2'(v) +1],
whence V(k, +0,s) = %ﬁ(k)joiw dug((kl)l—t%—)g
— 35K /(1 +5) + bp(E) (L —ik) Ulk, +o0,5). (7.41)
It follows that
V(k) OO,J‘) - V(ka — 0, S) = %ﬁ(k’> (1 _lk) RC[U(k) 0, J‘)], (7'42)
V(k,00,5) + V(k, —0,5) = B()/(1+3) + (1~ ik) Im[U(k, 0, )1, (7.43)

with the use of the simplifications (7.23). On entering these expressions into (7.29)—(7.34) and
writing (7.40) above, we obtain a solution equivalent to within scaling to that first given by
Raval (1978). The case of an initial é-distribution in position (7.7) is recovered on simply putting
p(k) = 1 throughout.

Case (iv). The spatially uniform solution

Lastly we shall indicate how the above results reduce to the spatially uniform solution of § 7
on going to the limit £ — 0. Taking this limit in the expressions (7.31)—(7.34) we see that

a(0,s5) = —s[U(0,00,s) + U(0, —0,s)] = 0,
b(0,s) =[U(0,00,s5) — U(0, —00,s)] = 2¥(c0,s),
¢(0,s5) = 2s[V(0, 00,5) + V(0, —00,5)] -2,
d(0,s5) = —2[V(0,00,s) — V(0, —0,s)],
_d(0,s) _ V(0, 0, 5) = V(0, — 0, )

while B(0,s5) = 5(0.5) = T(oo,5) , (7.44)
A(0,s) = —%{2 = —[V(0,0,s) + V(0, —00,s)] +%. (7.45)

These simplify further for the initial é-distribution condition in velocity, for which we can write
B(0,5) = —[¥(0,5) = ¥ (0,5)]/¥(0,5), (7.46)
A(0,5) = —[Y(00,s) — Y (vg,5)] +1/s. (7.47)
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A careful analysis of the cases v < v, and v > v, then shows that the solution takes the form

8(v—v,) 1 (= dy min(v, %)  dy Y (v,5) Y(v,, )
AR R~k haad IO i ot M = s o
(7.48)
This is clearly equivalent upon inversion to the expression (4.16). The general case (4.15) follows
by superposition.

7.3. Space—time correlation functions

While the above solutions contain, in effect, a complete description of the evolution of a
Rayleigh test-particle ensemble in position—velocity space, various reduced quantities are also of
interest, not least in making comparisons with other models for which explicit solutions are not
available. The most important such function is the Van Hove space—time correlation function G(x,7)
defined as ©

G(x,7) = f dvp(x,v,7) (7.49)
—

with the understanding that p(x,v,0) = &(x) ky(v) (Van Hove 1954, Vineyard 1958). The
function G(x,7) measures the probability that a particle released from the origin at time 7 = 0
will turn up in a distance element dx about x after a time 7 has elapsed, irrespective of its velocity.
Evidently G(x, 0) = 8(x) and ©
f dxG(x,7) =1 forall 7.

(Note that the full-range variable xe€ (— o0, +00) distinguishes the one-dimensional case, in
which necessarily G(—o0,7) = G(x,7) for all time, from the more familiar parity of G(r,7) in
three dimensions.)

Usually G(x, 7) is available only through its transforms, the intermediate scattering function x(k,7):

(k1) = f dvp(k,v,7) (7.50)
and the differential energy-transfer cross section S(k,7):

Sk, w) = dre-ior y(k,7), (7.51)
both these being in certain cases experimentally measurable. In theoretical work a further
function is conveniently defined, namely

Qks) = [ dre-rx(h) - |7 awbe,n.9), (7.52)

from which evidently S(k, w) = Q(k, iw) + Q(k, —iw).

Our interest in the above functions will be primarily in relation to other models and approxi-
mations, particularly the Gaussian approximation of Vineyard (1958) and the somewhat
primitive ‘instant thermalization’ model of Bohm & Gross (1949) and Nelkin & Ghatak (1964).

We shall consider the function @ (%, s) and obtain an explicit formula for it by direct integration
of the solution for f(k,v, 7). Thus from the general form (7.19) we find that

Q) = | duho(u) Fku,)

— JA(k,s) f " duz’() +1B(k9) f " uz () Utk )+ [ duz() Vi),
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whence via the obvious partial integrations it emerges that
Q(k,s) = A(k,s) + $B(k,s)[(1 +ik) U(k, 0,s) + (1 —ik) U(k, — o0, s)]
+ (1 +ik) V(k,00,s) + (1 —ik) V(k, — 0, s) (7.53)
which, on entering the expressions for 4 and B, simplifies to

g(k,00) (1 —ik) [U(k, 0, 5) — U(k, —0,s5)] + 2ik[ V(k, 00, 5) — V(k, —0,5)]

s = STU, 50,5 = UlF, —o0,5)] + 2k (1 4 ) (7.54)

Taking now the special case p(x,v, 0) = &(x) ky(v), the V-functions reduce to U-functions as before
with the result that :
Qlk,s) = (1+42) [U(k,0,s5) — Uk, —0,s)]
7 s[U(k, o0, 5) — Ulk, —00,5)] + 282/ (1 +£%)

(7.55)

This can be written explicitly as

NS du o du 242
Qk,s) = (144 )f——oo W)H——'/ﬂl_:}]—z/{sf-w [z(u) +iku+s]2+ 1 +k2}’ (7.56)

and determines the Van Hove function (7.49) to within a numerical inversion.

7.4. Spatial moments and the Gaussian approximation

In previous work much attention has been given to the calculation of the spatial moments
{(x**(1)) of the Van Hove function G(x,7) by operating with its moment generating function,
namely the function @ (£, s). Only the even moments need be considered, the odd ones vanishing
by the symmetry of the initial condition. The moments and their Laplace transforms can thus
be defined

(2 (1)) = ? dxx* G(x, 1)

- 0

= (= 1) (0% [0k*) x (K, T) |05 (7.57)
and (x2n(s)) = f : dre=s7 (x22(7))
= (= 1) (0% /0k*) Q(K, 5)|j=o- (7.58)

7.4.1. The second spatial moment (x2(s))

From equation (7.58) we have immediately

(x%(s)) = —[(0*/3k?) Q(%, 5)] 10> (7.59)

whence, by use of (7.56), after some algebra,
2 2
2 = — 7.60
6 = 55757 (7.60)
Now we have a check on the consistency of this result in the form of the two alternative expressions
for the diffusion constant D, of § 5.4.1:

® .9,
D, =f0 Sy(1)dr = %hma—;(x (1)) (7.61)

T—>00
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(see for example Desai & Nelkin 1966). Using the derivative and limit theorems for the
Faplace transform L1(0/0r) (Hn)] = (), (7.62)
lim sf(s) = lim f (1), (7.63)
80 t—c0
for the second expression in (7.61), we find
Dy = 3lim s (x%(s))
80

A

This is precisely the equation obtained earlier from the velocity autocorrelation function
(equation (5.14)).

To obtain the actual second moment as a function of time we must evaluate the inverse
L-Y[s?*Y(0,5)]~1}. Expressing this as the complex integral

= 1 J“’““’ dsesr
211 ) o —ieo szY(O $)

and replacing the path by the usual contour ABCDEF of figure 5, we see immediately that the
occurrence of s2 indicates a second-order pole at the origin. Calculating the residue, we find

LY[2Y(0, 5) (7.65)

sr /o2 __T 2 f ® du
srgso[e /s2Y(0,s)] ¥70,0) + 770,008) o 20" (7.66)
The contributions of the arcs BC and FA vanishing as before, there remain only those from the
integrals above and below the branch-cut. In similar manner to the development of § 4.2 we can
write these as

f ds e /52 Y(oo,s) = 2i f ® v, 2/ (0;) e Im[B-(V)],
CDEF 0
where

N : 1 1
AIm[B~()] = lel_l,%{[—z(v,() TielP Y(oo, A—ie) [ —2(0y) +i6]2 ¥(o0, —/\+ie)}
~ 2mi g(c0, A)
~ [R(00, )2 +12g(00, A)%] 2()*’

From this we can deduce our final result that

. _ ©  dv, z'(v,) g(c0, A) e~HoWT
(x%(1)) = 2D,7— 2+4Df e )3+2f0 ”A)*[R(Og VT nig (o0, (7.67)

The non-Gaussian behaviour of the model is clearly seen in the last three terms, whose effect
vanishes appropriately as 7 — co. Moreover the structure of the fourth is precisely that needed
to cancel the constant ones as 7 - 0 and reproduce the correct initial condition {(x2(0)) = 0. The
asymptotic result {x3(7)) ~ 2D,7 is self-evident.

0

T>

7.4.2. The fourth spatial moment {x*(7))

The fourth spatial moment is of particular interest in that it can be used to provide a measure
of deviations from Gaussian behaviour in the time-dependence of G(x, 7). The Gaussian approxi-
mation to G(x,7) as introduced by Vineyard (1958) would require that, for the special Rayleigh

model G(x,7) = nby(r)Lexp[—x2/9(7)?, (7.68)
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with 7(7) a function to be determined. To the extent that this is the case we would expect to have

1 (x4(1))
= = 7.69
3¢ (769
for all times.
Now the Laplace transform of the fourth spatial moment is given by

(¥4(5)) = (0*/0k*) Q(k, 5) | i—0»

so that again the required quantity can be obtained by differentiation of the expression (7.56).
After some lengthy manipulations followed by passage to the limit we find that

. _ 24 1 ®  duu?
(x4(s)) = Wg [;—3f0 [—Z-(m] (7.70)

An alternative form, connected by an integration by parts is

72 © duu?[z(u) —uz'(u)]
00, 5)%s% ), [z(u) +s]%

(*(s)) = T (7.71)

The correct limiting behaviour

lim s(x%(s)) = lim {x*(1)) = 0
. . §—>00 7—0
is again transparent.

Though it is possible to give a very complicated expression for (x4(7)) by inversion of the above
rather as for (x2(7)), we shall rest content here with a numerical inversion-calculation designed
to test the effectiveness of the Gaussian approximation for the Rayleigh model, using equation
(7.71) as it stands. The results are given in the next section.

We can, however, examine the asymptotic behaviour of {(x%()) rather easily. From equation
(7.71) we see that the contour for evaluating {(x4(7)) would skirt the usual branch-cut on the
negative real axis and enclose a third-order pole at s = 0. From the limit theorems we have
already used, we know that the dominant contribution at long times should come from the

pole rather than from the cut. Thus we may assert that
(x4(1)) ~ reses™(x4(s)), T > 0,
§=0

= lim §(d2/ds2) [s® es(x%(s) )]
§—>0

= §[7%+7(d/ds) + (d?/ds®)] {x4() )| so- (7.72)
Defining the numerical quantities
© d m
7(n,m) = . %—ﬁ, m<n (7.73)

and carrying out the necessary operations on equation (7.71) we find that

(xM(1)y ~ 12D372+C,7+C), (7.74)

where C, = 12D3[4Dy7(3,0) —37(4, 2)],

Cy = 12DF[D*)(3, 0) — 4D,7 (4, 0) — 8Dy 7(3, 0) (4, 2) + 47 (5, 2)].
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7.5. Numerical calculations on spatial moments

To obtain t?le detailed behaviour of (x%(7)) and (x*(7) ) for all times we used the Dubner-Abate
inversion of the Laplace transforms #-1[(x%(s))] and £ ~1[{x*(s))] as described in §4.4. At the
same time we evaluated the constants Cy and C, given after (7.4) using the expression (2.46) for
z(v) of the Maxwellian heat-bath.

The results of these calculations are illustrated in figures 12—14 over a time-range of zero to
some 20 unit collision-times ([z(0)]~). In figure 12 the true second moment is compared with
the asymptotic estimate 2D, 7. It will be seen that (x2(7) ) is exceedingly linear for 7 > 2, with the
asymptotic estimate quite adequate at times beyond this value. A similar correspondence will be
found for the fourth moment (figure 13), except that here (x4(7)) is quite seriously falsified by the
asymptotic approximation at shorter times.

0 4 8

Ficure 12. Time evolution of the second spatial
moment {x2(7)) for an initially localized Max-
wellian distribution of Rayleigh test-particles.
The dashed line represents the asymptotic value

(*%(1)) ~ 2D,7.

=
=)

A1)/ (2(1))?

0.9
0

100.0
)
E
%
N
12 16 20 0 4

Ficure 13. Time
moment {x*(T))

20

evolution of the fourth spatial
of an initially localized Maxwel-

lian distribution. The dashed line is the asymp-
totic result (7.74).

20

Ficure 14. Ratio of the moments 3(x%(7))2/(x4(7)). The value is unity for truly Gaussian behaviour; in fact
for the Rayleigh model such behaviour is limited to very short and very long times.
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Lastly, in figure 14 we compute the ratio of moments 3(x%(7))2/(x%(7)) as a measure of
deviation from Gaussian behaviour. The departure is indeed considerable and characteristically
greater in the medium-time regime 0.5 < 7 < 5, the maximum discrepancy being at 7 = 0.9
collision times. This behaviour is broadly similar to that found by Nelkin & Ghatak (1964) for the
Bohm-Gross model (Bohm & Gross 1949).

We may reasonably conclude that, so far as the special Rayleigh model is concerned, the
Gaussian approximation to the Van-Hove correlation function G(x,7) is not to be taken as
more than a rough guide to the general shape of the space-time correlation. Such discrepancy,
like that found by Nelkin & Ghatak, should probably be regarded as the rule rather than the
exception in particle transport statistics. '

8. CONCLUSION

While we have attempted to make this a definitive study of the special Rayleigh model, we
have not gone to all possible lengths to cover every aspect of interest. In particular we have not
considered the interesting problems that arise when spatial absorbing or reflecting barriers are
introduced and where sources may also be present. These refinements, which are more in the
spirit of neutron and radiative transport theory, are undoubtedly non-trivial in one dimension,
but their study would have taken us too far afield. We have also neglected to treat the eigenvalue
problem underlying the spatially inhomogeneous model, in which the occurrence of complex
eigenvalues of the form A = z(v,) + ikv, lends an element of wave-like character to the solutions
and requires us to express the solution for p(k, v, 7) as an integral in a complex A-plane. While a
sufficiently ingenious use of this formulation might lead, as in the spatially homogeneous case,
to a useful alternative to the transform solutions, evidence from neutron transport theory (see for
example Corngold 1964) shows the problem to be of considerable complexity and we have not
succeeded in carrying it beyond formal expressions. These are no real alternative to the com-
paratively explicit solutions given in § 7.

In concluding we cannot but return momentarily to the general Rayleigh problem in which the
test-particles have mass distinct from but comparable with that of the heat-bath particles
(Hoare & Rahman 1973). Although in this case the scattering kernel remains relatively simple
in form, its spectral properties are undoubtedly far more complex both in the discretum and
continuum branches than those elucidated here. While a certain amount is known about the
passage to the Brownian motion limit, and recent numerical calculations have thrown light on
the nature of the discrete spectrum (Barker ez al. (1981)) virtually no progress has been made in
analysing the continuum and its role in the relaxation process. This problem is evidently of an
order of difficulty such that our lengthy studies of the unit-mass-ratio model still give scarcely a
hint of how an analytic solution to the general model might be sought.

The authors are indebted in particular to the Science Research Council for the award of a
Research Studentship to one of us (S.R.) and to the National Research Council of Canada for
contributions to travelling expenses. Generous advice from N. G. van Kampen and M. M. R.
Williams contributed significantly to this work.
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We collect here and illustrate the main properties of the discontinuous functions introduced in

§ 3, with particular reference to their decomposition into parity components. The operations
written here are, of course, ‘symbolic’, but can be justified in the context of distribution theory

in the usual manner.

A 1.1, The elementary discontinuous functions

We consider the five functions of the two variables ¥ and y. In most operations x is considered

the variable of interest and the functions are essentially undefined for x = y.

x<y x>y

Q) |x-yl =y-x x-y
(i) max(x,y) = y x
(iii) min (x,y) = «x Y

(iv) Hx—y) = 0
v) sgn(s—g) = —1 1

A 1.2. Derivative relations
(a) (d/dx)|x—y| =sgn(x—y) = 2H(x—y) -1,
(b) (d/dx) max (x,y) = H(x—y),
(¢) (d/dx)min (x,y) =H(x—y)—1,
(d) (d/dx) H(x—y) = o(x—y),
(¢) (d/dx)sgn(x—y) = 28(x—y).
\ A1.3. Parity decomposition
(a) The modulus function
Let [x=y| = |x=ylev+[x—yloas; (x#9),
then |*—glev = §(|x —y| + |5 +y]) = max (x,9),

|*—yloa = 3(|x—y| — |x +y|) = —sgn (x) sgn (y) min (||, |y]).

On differentiation the components behave as follows:
(d/dx) |x—gylev = [(d/d]x]) max (|x], [])] (d]x[/dx)
= sgn () H(|x| - |y])
=Hx+y)+H(x-y) -1,
and (d/d#) [% = yloa = —28(x) sgn (y) min (x|, |y])
—sgn (x)%sgn (y) [H(|%] - |y]) - 1]
= —sgn (y) [H (|| - |y]) —1].
Similarly (d2/d®) |x —ylev = sgn (x) (|| [y])
= 0(x+y) +8(x—y) = 28(x—Y)ev,

28

(A1.1)
(A1.2)
(A1.3)
(A1.4)
(A1.5)

(A1.6)
(A1.7)

(A1.8)

(A1.9)

(A1.10)

Vol. 305. A
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436 M.R.HOARE, S. RAVAL AND M. RAHMAN
and (d?/dx?) |x —y|oa = —sgn (x) sgn (y) o(|x| — |y|)
= 28(x —¥)oa. (A1.11)

Note that in each case the ordinary derivative relations are recovered on combining the appro-
priate parity components.

(b) The Heaviside function

If H(x—y) = Hev(x—y) + Hoa(x —y)
then Hey(x—y) = §{1 —sgn (y) [H(|x| - |y]) — 1]}, (A1.12)
Hoa(x—y) = §sgn (x) H(|*| - |y])- (A1.13)

(¢) The S-function

If O(x—y) = ev(x —y) + Soa(x—y),
then dev(x —y) = §[0(x—y) +(x +4)] = 8(|x| - y]), (A1.14)
doa(r—y) = §[d(x—y) —d(x+y)] = —sgn (x) sgn (y) &(|x| — [y]). (A1.15)

These results may be represented graphically as in figure 15.

<a)—¢—r=_L+—J—+_,—¢—"
—r:= +

(b)—ﬁ»—!—: ‘crkf + 1¢1
ALy‘ _ T¢¢ .

F1GUrE 15. (a) Parity decomposition of the Heaviside step-function H(x—y) for y > 0 (upper) and y < 0 (lower)
(equations (A 1.13) and (A 1.14)). () Parity decomposition of the d-function §(x—y) for y > 0 (upper)
and y < 0 (lower) (equations (A 1.15) and (A 1.16)).

APPENDIX 2. SOME REGULAR INTEGRALS

Three types of integral that occur repeatedly throughout the text are

Ji =f: do hy(0) R, 2) = R(00,A) + 72, (A2.1)
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J, = fwdvvho(v)R(v, A) = 14+AR(c0, A), (A2.2)
0

Ty = [ dvh(o) R0, ) Ro, ') = R(o0,) Rieo, X) + 55 [R(e0, ) = R(e0, N)], (A23)

(" dy
where as throughout R(v,A) = fo o) =A%
and we confine our attention for the present to the regular range of A, namely A¢[1, co] on the
real line. The above results are consequent upon the special properties of the functions hy and z,
those relevant here being

(a) 2(0) =1, (6) 2'(0) = 0,
(¢) z(+o0) = oo, (d) 2'(+o0) = £1,
(e) 2hy = 2", (f) vZ2—z—>0 as v—> +o0.
Using first (¢) we have for J;: q 4
T A A vz
Nl‘zjo[z—w fo EENE

f [z—AT? /\]2 .

The above result follows on using (2) and (¢) in the last term.
Consider now the integral J,. Noting that vz” = (vz’)’ — 2z’ we can write

Jffwd”[g‘(”*""”]f:[‘z‘r?—“—uz

do(vz —z)
z)f (z—- y)2 f
Thus, since the boundary terms vanish by (f) above,
® d/ 1 * do © doz
S = fo d””a{;(z—/\)“ o 2=AT)y ZonE
Putting now z = (z—A) + A in the numerator of the last integral, the second term cancels and on

evaluating the first by parts v o © dy
ST JOY
z—2Alp 0o (z=2)

Using then (f) for the upper limit of the first term, the result (A 2.2) follows.
Turning now to the integral J; we see that

o, = f 0°° 2" R(0,A) R(v, ')

= 2'(v) R(v, A) R(», )| — f : doz’ [ éf’f’/{}))z’fi(?_’ :\\))2]
_ N L [REA) | R@ )| ! :
= Rloo,2) Rloo, 1) + | T2+ 2 - d”[<z—2«'> EEPVEAREEY (Z_W]-

A partial-fraction decomposition of the remaining integrand shows that

[ 1 + 1 ] 1 [ t 1 ]
(z=2A)(z=A)2 (z=A) (z=A)2]  A=X"|(z=A)2 (z=XA")2]
Since the boundary terms vanish, the result (A 2.3) follows immediately.

28-2
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The various complex integrals occurring in § 5 can be treated in the same manner on putting
A = —sin the above, provided always that s is not on the branch-cut extending from —1to — o0
on the negative real axis. Several similar integrals with limits other than 0 to co have occurred;
these are closely related to the above and may be treated similarly with obvious changes in the
boundary terms.

APPENDIX 3. PSEUDOFUNCTIONS AND HADAMARD FINITE PARTS

Here we shall examine briefly the interpretation of the pseudofunction Pf R(», A) which occurs
either alone or in integrals of the previous types when the quantity [z(v) —A]~! possesses a
singularity in the range of integration. We write

v dy

o [2(y) —A]*
asin (3.7) it being now understood that Ae[1, o] and z(v) €[0, c0]. The sense of the above is that
we need to interpret inner products of the form (PfR(v, A), ¢(v)) for suitable test-functions ¢ as

R(v,A) = Pf (A3.1)

PER(, ), $(0)) = Fp [ doR(s,2) 9. (A3.2)

Here the prefix Fp on the right indicates the extraction of the Hadamard finite part of the
formally divergent integral appearing there. This process will now be illustrated.
Since by definition of the derivative of a distribution:

(PER(, ), 9" (0)) = —(Pf[2(v) —A]%, 0(v)) (A3.3)

we can modify the set of test-functions and concentrate on the interpretation of

(PI[2(0) = A]2, p(0)) = F f [d”"’ i (A3.4)

After Hadamard (see especially Zemanian 1965, §§ 1.4 and 2.5) we put

@iLz=2 ) = tim (( [+ ) 1),

where I(e,) is an infinite part to be determined. As always we write z(v,) = A.
It is convenient first to change to an integral over z, writing F(z) = ¢[v(z)]/(dz/dv) and
letting the limit quantity change such that ¢, = z’(v) €,. In these terms we can write

@z = ([ [ ) TR ).

The function F(z) is now expanded about the point z = A to an order sufficient to remove the
singularity- ThUS  Pz) = FO) +F/ () (= 2) +¥/() (2= V%,

where ¥(z) is a function, regular at z = A which need not be determined. On inserting this
expression into the integrals and evaluating we find that

(Pf[z—A]"2% ) = F(A) (z(a)l— A z(b)l— /\) FEA)n [§§Z§ ‘_' ;‘\]
+ 0 dzyr(z) 4 lim [——2F(A) -1 (Gz)] )
a) €,—>0 €,
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the logarithmic terms in ¢, having cancelled. Thusitis clear that the infinite part of the integral is
I(e,) = 2F(A) /e,. Subtracting this according to the Hadamard prescription, we can therefore

write N A—e 20\ F(z)dz_ 2F(A)
s s[4 ) )

€—>0 () Ate, €,

To return to the v-integration, we must remember thate, = z’ (v,\) €,, S0 that

ey 6,2 (v))

Although this expression is meaningful asit stands and might be used in numerical computations,
we may use a simple trick to turn it into a form in which €, does not appear explicitly. Note that

the equivalence
V)€ d 2 1 1
U e )
. nte) V=002 € \nn—a b-—-v,
enables us to write

N R e Ve e I (et

Z'()? (v—o0)? 2 (0)*

An explicit form of the function PfR(»,A) can be obtained from the above by substituting
a = 0and ¢(y) = H(y) H(v—y). It follows straightforwardly that

v 1 1 1 1 1
PER(v, A) =fo dy {[z@) —A]fz'@m(y—vm}‘z'(wﬁ[v—vﬁvﬂ (v>0). (A3.7)

This important relation allows us to separate the pseudofunction R(v, A) into regular and singular
parts as we did in §3.4 (equations (3.70) and (3.71)). The singular part giving only Cauchy
principal values when integrated, only these need arise when inner products with R(v, A) are
evaluated. Use of the above is thus an alternative to the application of the equivalence (A 3.3)
above. Moreover integrals of products of Pf R pseudofunctions can be reduced to double Cauchy

principal value integrals to which the Poincaré-Bertrand theorem applies.
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GURE 3. The symmetrized Rayleigh transition kernel G(u, v) for a Maxwellian heat-bath (equations (2.18) and
(2.45)). The coordinate origin of the u,v-plane is at the centre of the figure, the ¥ = v diagonal running
between the peaks, Note the discontinuity in the first derivative along this line.
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